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Abstract: In our previous work, we designed and implemented a synthetic metabolic pathway for 
1,2,3-trichloropropane (TCP) biodegradation in Escherichia coli. Significant effects of metabolic burden 
and toxicity exacerbation were observed on single cell and population levels. Deeper understanding 
of mechanisms underlying these effects is extremely important for metabolic engineering of efficient 
microbial cell factories for biotechnological processes. In this paper, we present a novel mathematical 
model of the pathway. The model addresses for the first time the combined effects of toxicity 
exacerbation and metabolic burden i n the context of bacterial population growth. The model is 
calibrated with respect to the real data obtained with our original synthetically modified E. coli strain. 
Using the model, we explore the dynamics of the population growth along wi th the outcome of the 
T C P biodegradation pathway considering the toxicity exacerbation and metabolic burden. O n the 
methodological side, we introduce a unique computational workflow utilising algorithmic methods 
of computer science for the particular modelling problem. 

Keywords: biodegradation; computational modell ing; population growth; metabolic burden; 
environmental pollutants 

1. Introduction 

Escherichia coli strain BL21(DE3) is frequently used i n synthetic biology w i t h embedded protein 
expression (pET) vectors enabling heterologous protein expression [1-6]. Especially, it has recently 
found use as a cell factory for heterologous expression of entire biochemical pathways [7-11]. 
In spite of its common usage i n metabolic engineering, the expression system i n E. coli BL21(DE3) 
suffers from certain problems pr imari ly caused by strong overexpression of recombinant proteins 
triggered by exposing the cognate Lacfi / PiacUV5-77 expression system to the synthetic inducer 
isopropyl-beta-D-thiogalactopyranoside (IPTG) [12]. Such negative effects that result from prioritising 
high levels of protein production to normal metabolic capacities in host cells are known as the metabolic 
burden [13,14]. One of the known factors causing the burden is the energetically expensive maintenance 
and replication of plasmid vectors carrying heterologous genes [15-17]. Other factors are associated 
wi th the activities of the foreign proteins w h i c h may interact w i t h the metabolic network of the cell 
and burdens l inked to the components of the expression system itself, such as IPTG. The indiv idual 
factors may not always be additive, but can sometimes potentiate each other, leading to significantly 
larger effects on the l iving cells—the so-called exacerbation effect. 
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In our previous work, we designed and implemented a synthetic metabolic pathway for T C P 
biodegradation i n E. coli [18]. The pathway was assembled with enzymes introduced to the cell using 
the pETDuet plasmids w i t h L a c I Q / P ; f l C L i y 5 - T 7 expression system inducible by IPTG. In relation to 
that work, we observed the effect of metabolic burden and toxicity exacerbation on E. coli population 
i n [19]. However, the mechanisms behind these effects and their influence on cell growth have not 
been targeted. Deeper understanding of underlying mechanisms is extremely important for metabolic 
engineering of efficient microbial cell factories for biotechnological processes. To the best of our 
knowledge, the metabolic burden effect has not yet been fully-handled regarding the dynamics of 
affected metabolites and the influence on cell population growth. In [20], the authors reviewed existing 
fundamental frameworks for the kinetic modell ing of microbial growth based on basic hypotheses 
about the underlying reaction systems. A n integrated model presented in [21] couples the growth rate 
with the gene expression and the growth rate wi th the growing population of cells. To the best of our 
knowledge, existing population-level growth models neither consider metabolic interactions together 
with toxic effects caused by some metabolites nor describe a burden linked w i t h using of engineered 
metabolic pathways. It is apparent that such effects cause a significant increase of the complexity 
of the underlying non-linear dynamics. To that end, a precise explanation of the resulting emergent 
behaviour remains a challenge. 

The approach of computational systems biology gives a powerful tool a l lowing to study the 
dynamics of biological mechanisms holistically i n terms of mathematical models. A n important 
aspect of modern systems biology is the requirement to ground the models wi th in the relevant 
genomic context of the explored organism [22]. It is obvious that uti l ising mathematical modell ing 
and computational analysis based on the models makes an important starting point for successful 
experiment design in synthetic biology. To that end, the synthetic pathway we designed for conversion 
of the highly toxic T C P to glycerol (GLY) i n E. coli [23] was optimised by using our original 
mathematical model [18] that allowed us to simulate the behaviour of the synthetic pathway i n silico 
. The synthetic pathway is depicted i n Figure 1. It is composed of a few toxic intermediates w i t h 
harmless glycerol as a final product and it utilises enzymes from other bacterial species. These enzymes 
represent the engineered form of haloalkane dehalogenase (DhaA31, originally from Rhodococcus 
rhodochrous N C I M B 13064) and haloalcohol dehalogenase (HheC), and epoxide hydrolase (EchA) 
from Agrobacterium radiobacter A D 1 . They have a major role i n this pathway; however, since they are 
heterologous proteins in E. coli, they have to be produced at the expense of other substances (causing a 
particular instance of the metabolic burden). 

( # ) - D C P 

EchA HheC EchA 
T C P E C H C P D G D L G L Y 

( S ) - D C P 

Figure 1. Model of metabolic pathway for biodegradation of TCP. A general scheme of an 
enzymatic metabolic pathway for biodegradation of TCP into GLY. Note that DhaA31 produces 
two different enantiomers of 2,3-dichloropropane-l-ol (DCP) with similar rate. However, enzyme 
HheC has notably different enantioselectivity with them. It is also worth noting that enzymes HheC 
and EchA are employed twice in the pathway. Other intermediates are epichlorohydrin (ECH), 
3-chloropropane-l,2-diol (CPD), and glycidol (GDL). 
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In this paper, we propose a significant extension of the existing mathematical model of the 
pathway which addresses for the first time the combined effects of toxicity exacerbation and metabolic 
burden i n the context of bacterial population growth. To calibrate and fine-tune the model w i t h 
respect to our original synthetically modified E. coli strain, we conducted several dedicated wet-lab 
experiments. Based on the new model calibrated with respect to the real data, we explore the dynamics 
of the population growth along wi th the outcome of the TCP biodegradation pathway considering all 
the phenomena mentioned above. O n the methodological side, we introduce a unique computational 
workflow utilising algorithmic methods of computer science. It allows us to fully exploit the expressive 
power of the model under parameter uncertainty. 

2. Materials and Methods 

2.1. Laboratory Methods 

2.1.1. Bacterial Strains and Plasmids 

Escherichia coli strain BL21(DE3) was used for this study w i t h two modifications. Here, they are 
called deg31 (carrying synthetic metabolic pathway containing recombinant plasmids pCDF'::dhaA31 
and pETDuet::edzA-/zfeC) and host (carrying empty plasmids p C D F and pETDuet). 

2.1.2. Preparation of Pre-Induced Cells 

The lysogeny broth medium (i.e., LB medium) with volume of 10 m L containing respective antibiotic 
combination (75 |xg/mL ampici l l in, 25 |xg/mL streptomycin) was inoculated wi th transformed cells 
from glycerol stock. The culture was incubated overnight at 37 °C with shaking (180 rpm) in incubator 
Innova 44 (New Brunswick Scientific, Edison, NJ , U S A — t h i s machine was used for al l incubations). 
Then, 25 m L of fresh LB m e d i u m w i t h respective antibiotics were inoculated w i t h 250 |xL of night 
culture and incubated at 37 °C w i t h shaking (180 rpm) unti l OD 6oo reached 1. The cultures were 
induced w i t h 0, 0.01, 0.05, 0.2 and 1 m M IPTG and incubated overnight at 20 °C. Cells were then 
collected at late exponential phase by centrifugation (4000 x g) at 4 °C in centrifuge Sigma 6-16K (Merck, 
Darmstadt, Germany—this machine was used for all centrifugation) and washed with 50 m M sodium 
phosphate buffer (NaP buffer, p H 7). After washing and centrifugation, cells were resuspended in NaP 
buffer to final value of 7 OD 6oo-

2.1.3. Short Term Toxicity Test 

Prior to the toxicity test, 4 m M T C P was diluted i n 5 m L of N a P buffer i n 25 m L sterile Reacti 
Flasks closed by screw caps and incubated for 1 h at 37 °C. The reaction was initiated by mixing 
preincubated buffer wi th T C P wi th 5 m L of cells i n N a P buffer, resulting i n final ODgoo 3.5 and 2 m M 
concentration of TCP. Reaction suspension was incubated in water bath at 37 °C with constant shaking 
for 5 h. 

Cell samples were taken from the reaction mixture at the beginning of the toxicity test and after 4 h 
of incubation. Cel l suspension (100 \xL) was aseptically withdrawn from the flask and serially diluted 
i n 900 |iL of PBS buffer ( p H 7.4) up to the final di lut ion of 1 0 " 6 to 1 0 - 7 . Di luted cell suspensions 
(100 |iL) was spread on Plate Count Agar (PCA) plates and incubated 24 h at 37 °C. After incubation, 
colonies on agar plates were manually counted and expressed as colony forming units per volume 
(CFU/mL). 

2.1.4. Growth Test 

Cells of E. coli BL21(DE3) strain carrying empty plasmids and degrading strain deg31 were 
pre-grown i n L B m e d i u m containing respective antibiotic combination (75 |xg/mL ampici l l in and 
25 |xg/mL streptomycin) at 37 °C unti l the culture reached stationary phase. The cells were then 
centrifuged at 6000x g and resuspended i n Synthetic Minera l M e d i u m (SMM) [18]. S M M medium 
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(15 mL) w i t h 10 m M glycerol i n 25-mL Reacti Flask closed wi th screw cap was preincubated at 37 °C, 
growth test was initiated by addition of cells to 0.1 O D 6 0 o - G r o w t h m e d i u m was supplemented 
wi th IPTG to the final concentrations 0, 0.01, 0.05, 0.2 and 1 m M . Cells were incubated at 37 °C w i t h 
shaking (200 rpm). Optical density (OD6oo) of the culture was measured periodically and cell dry 
weight (CDW) i n g/L at given time intervals was determined by mult ip ly ing the O D 6 Q O values by 
0.39 g/L [24]. Acute toxicity measurement was performed in the same conditions, and the medium for 
toxicity test contained respective concentrations of T C P pathway metabolites. 

2.1.5. Glycerol Analysis 

Samples withdrawn from incubated cell cultures were heated for 10 min at 95 °C, centrifuged and 
stored i n the fridge prior to analysis. Free Glycerol Colorimetric/Fluorometric Assay kit (BioVision, 
U S A ) was used for analysis of glycerol content i n the cells w i t h d r a w n from toxicity or growth tests 
following manufacturer's instructions. 

2.2. Parameter Constraints 

We consider a set of m unknown parameters p\,pm and the set P C IR™0 denoting the so-called 
parameter space consisting of wz-dimensional vectors of parameter values. For the purpose of this paper, 
we assume P to be bounded. The constraints on parameters could generally be of various types. In this 
paper, we consider linear constraints of the form: 

fli-piH Yam-pm~b (1) 

where pj € M>o : / € {1 , . . . , m} is a parameter; aj, t e l stand for coefficients; and ~ £ { < , > , < , > 
, = , T }̂ represents (in)equalities. 

2.3. Biochemical Model 

A biochemical model, i n this context, is a dynamical system given as a set of ordinary differential 
equations (ODEs) of the form 

* i = fi(x,p) : i e { l , . . . , n } (2) 

x = (xl,...,xn) e M>o (3) 

P=(pi Pm)eF (4) 

where x is a vector of n variables, p is a vector of m model parameters, and /; is a kinetic function 
constructed as a sum of reaction rates where every sum member represents an affine or bi-linear function 
of Xf, a ramp or a Heaviside step function of x, (Figures 2 and 3, respectively); or a function from a limited 
set of non-linear functions of referred as sigmoidal functions; all of them possibly containing own set 
of internal parameters. 

In general, our framework covers mass action kinetics ([25], Section 1.1) w i t h stoichiometric 
coefficients not greater than one and al l biologically relevant non-linear functions such as 
Michaelis-Menten [26] or Hill kinetics [27], and microbial growth kinetics such as Monod [28]. 
A n additional requirement restricts the role of parameters in kinetic functions; in particular, we require 
// is affine i n p. 
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Figure 2. Definition of the ramp function. (Right) A mathematical definition of an increasing ramp 
function as used in our workflow. Parameters a and b are usually set to values 0 and 1, respectively; 
and vice versa for decreasing version. Values t\ and ti typically represent some significant thresholds 
on x. (Left) Graphical description of the same function. 

b — 

(I 

H(x, t, a, b) = a x < t 
b x>t 

t 
x 

Figure 3. Definition of the Heaviside step function. (Right) A mathematical definition of an increasing 
Heaviside step function as used in our workflow. Parameters a and b are usually set to values 0 and 1, 
respectively; and vice versa for decreasing version. Value t typically represents an important threshold 
in the domain of x. (Left) Graphical description of the function—specifically the increasing version. 

2.4. Inverse Problem 

A n inverse problem i n mathematics is a process of f inding a good model (with parameters) 
reflecting given data; mathematically speaking: 

M(n) (5) 

where n is a vector of parameters of a model M. and d represents the given data. 
Intuitively, the problem is the following: " H o w to find the proper set of parameter values n given 

a model M.." In this paper, we distinguish two classes of the inverse problem—parameter estimation 
and parameter synthesis. 

Parameter estimation is based on optimal fitting of the model parameters to observed experimental 
data. In the basic case, we assume the model to be a parameterised curve. 

Parameter synthesis is a method that allows identification of satisfiable parameter values w i t h 
respect to a given set of hypotheses restricting systems dynamics (described in a particular formalism) 
and a pr ior i k n o w n parameter constraints (e.g., correlations of parameter values, constraints on 
production/degradation ratio, etc.). In this case, the parameters are assumed to be the model 
parameters (typically, the rate coefficients appearing i n kinetic functions) [29^40]. 

2.4.1. Parameter Estimation and Regression 

Parameter estimation is a well-known process for the identification of the model parameters from 
experimental data representing the observations of the system. The particular problem of f inding 
a parameterised curve (i.e., function) that approximately fits a set of data is referred to as regression. 
A function is classified as either linear or non-linear concerning affinity of the fitted parameters. 
Consequently, the problem is classified as the linear regression or the non-linear regression according 
to the function class. In general, the linear regression is easier but of l imited effectiveness and it is 
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preferred if we know the function. In this paper, almost all concerned functions (i.e., models) belong to 
the non-linear class. Hence, we assume only non-linear regression further referred to as regression or 
fitting (for simplicity) [41]. 

2.4.2. Parameter Synthesis and Robustness Monitoring 

Both approaches rely upon a temporal logic for specification of the behaviour properties of 
dynamical systems (Section 2.3). A l though several different temporal logics have been developed, 
they can al l be determined i n the context of paths (or runs) of the system, i.e., the infinite sequences 
of states describing the system dynamics i n consecutive time events. Such sequences are encoded i n 
temporal logic formulae [42]. 

Parameter synthesis performs comprehensive exploration of the continuous parameter space 
including the space of initial conditions. It provides a qualitative answer to the question "which settings 
of a model satisfy a given set of temporal properties". It is not as widely used as parameter estimation 
and therefore many of the developed tools are still i n a prototype phase [29-40]. 

Robustness monitoring enables quantitative evaluation of the robustness of a model wi th respect 
to a temporal property under some perturbation of parameters (typically, reaction rate constants or 
initial conditions) [43-48]. 

2.5. Analysis Workflow 

Mathematical models i n synthetic biology are often represented i n terms of the O D E s system. 
These models are quantitative and their functionality relies on particular parameter values. Parameter 
estimation is often the only solution to obtain proper parameter values that fit w i t h experimental 
observations. In this section, we present our methodology step by step. The presented workflow is an 
extension of the workf low we introduced i n [37]. 

2.5.1. General Assumptions 

There are several preliminary assumptions upon which the workf low is formulated. First, the 
model must be a metabolic pathway (i.e., a linked series of chemical reactions catalysed by enzymes [49]). 
Next, we consider several assumptions l imiting the experimental settings of the studied system: 

1. We assume the total inducer concentration to be constant i n the time frame of our interest. 
A n inducer is supposed to have a function of an input parameter, and it w o u l d be an inadequate 
parameter should it be adjusted spontaneously over time. Otherwise, the inducer degradation 
rate w o u l d be needed either found i n literature or extracted from experimental data. 

2. The workf low is l imited to protease-deficient bacterial strains (e.g., E. coli BL21). In particular, 
we assume the total concentration of every enzyme affecting the studied pathway is constant in 
the time frame of our interest. Moreover, no influx of the enzymes is permitted as a consequence of 
time-limited induction phase where the proteosynthesis takes place [50,51]. Addit ional synthetic 
processes are considered negligible i n a microbial population stressed enough by the massive 
expression of (heterologous) genes during induction. 

3. There occurs a metabolic burden effect caused by the heterologous genes expression during the 
induction process and possibly by the presence of an inducer itself w h i c h i n a combined way 
affects the bacterial growth rate. 

4. Finally, we assume the bacterial population is i n the stationary phase after the induction process 
is finished. 

These assumptions limit the use of the proposed workf low to studies of the synthetic metabolic 
pathway models describing the metabolite dynamics i n a time frame of a few hours. Moreover, 
the workflow targets the protease-deficient bacterial strains assuming some of the enzymes are products 
of expression of heterologous genes initiated by a non-metabolisable inducer dur ing the induction 
process. It is worth noting that these significant assumptions help to keep the mathematical model 
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computationally feasible in terms of the number of potentially unknown parameters (thus, minimising 
the risk of over-parameterisation). In particular, the degradation rates of enzymes can be neglected in 
such settings. 

2.5.2. Workflow Description 

In the previous section, we define a metabolic pathway as a chain of chemical reactions w i t h 
metabolites as the inputs and outputs of the reactions catalysed by enzymes. This form of the system 
is assumed to be the input to the workflow. The mathematical vector of concentrations of al l model 
enzymes can be understood as the specific point i n the enzymatic space. 

In Step 1 of the workflow, we focus on the reduction of the enzymatic space. A s s u m i n g that 
some of the enzymes are products of the induction process, their concentration can be expressed 
as the set of functions w i t h an inducer as the input. There is one such function for each enzyme. 
The internal parameters of these functions need to be extracted out of experimental data—measured in 
various initial concentrations of the inducer—possibly with the help of parameter estimation methods. 
Typically, there are more enzymes than inducers i n biochemical reactions. This step eliminates the 
extent of dependency of the model on enzymes and it provides the reduction of the number of potential 
model parameters. 

U p to this point, the model was considered without any effect on the bacterial population. 
We propose to monitor and possibly predict an impact of the pathway on the population—such as 
the metabolic burden if using plasmids carrying heterologous genes—instead of model l ing entire 
bacterial system. Fol lowing this idea, i n Step 2 of the workflow, we extend the current model w i t h 
new variables describing: (1) the bacterial population; and (2) a substrate used to feed the population. 
In general, there can be more sources of nutrition. The dynamics of the extension is defined by the 
growth rate and death rate functions. Each rate function must depend at least on the particular substrate 
and might depend on the inducer and any of the metabolites especially if they have a harmful effect on 
the population. To extract a proper rate function, fitting of the internal parameters to experimental data 
is needed. The traditionally used growth functions include Monod, Moser, Tessier, etc. [52]. They can 
also be used for diauxic growth ([53], Section 12.1.3). A t the cost of expanding the model w i t h a few 
new variables, our framework allows predicting the population development depending on settings 
of the model parameters. 

To fine-tune the model , we can use the formal computational methods of parameter synthesis 
mentioned i n Section 2.4.2. This approach is more efficient than iterative analysis of demanding 
laboratory experiments used for fitting. Thus, i n Step 3 of the workflow, we need to specify a set of 
relevant parameters—ideally, the coefficients that can be altered i n an experiment design al lowing 
validation of the model-based results. Besides that, we need to formulate the temporal properties 
tailored to the particular case study. In general, this requires having some a priori knowledge about the 
investigated system. Nevertheless, there exist several typical (template) properties which can be used 
universally (i.e., oscillation, bistability, etc.). By using parameter synthesis together w i t h robustness 
monitoring, we can: (i) specify various hypothetical scenarios where experimental data are missing 
or even impossible to achieve i n laboratory conditions; (ii) monitor the behaviour of the investigated 
model; and (iii) optimise a set of tunable model parameters. 

2.6. Software Tools 

For the fitting procedure, we use several tools. GraphPad Prism (https://www.graphpad.com/) 
(version 8.2.1 (441)) is used i n Section 3.3 to fit the functions describing the stable concentration 
level of enzymes induced by IPTG. The tool G U I is easy to use for traditional functions such as 
Michael is-Menten. However, to investigate and compare the usability of a comprehensive set of 
functions, we use a more advanced tool—the F M E package (https://cran.r-project.org/web/packages/ 
FME/index.html) (version 1.3.5) [54] of the R language [55]. It offers well-documented procedures: 
parameter identifiability; parameter sensitivity; parameter fitting; and more. 

http://www.graphpad.com/
http://cran.r-project.org/web/packages/
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For the parameter synthesis procedure, we utilise our tool Pithya [40], providing a parameter 
synthesis algorithm working with an expressive temporal logic H U C T L p [39,56]. Its main advantage is 
it enables a fully automatised investigation of the system dynamics including exploration of equilibria. 
The tool has G U I and C L I , both available on github (https://github.com/sybila/pithya-gui) and also 
online (http://pithya.ics.muni.cz). 

For the robustness monitoring, we use our tool Parasim that implements the algorithm working 
wi th a signal temporal logic STL* [46-48] expressing properties of continuous signals. STL*operates 
wi th forward consecutive time events over real-valued signals (i.e., evaluated variables). Its strength 
is to identify various types of repetitive behaviour (i.e., oscillations). The tool is available on github 
(https://github.com/sybila/parasim) and makes part of the online toolset BioDivine (http://pithya. 
ics.muni.cz/galaxy). 

Both tools were successfully used on various biological case studies but so far they have been 
employed only separately (Pithya [34,37,38,56-60] and Parasim [46,48]). In this paper, we combine 
their application on a single model for the first time. Us ing the input files available online i n shared 
history notebooks i n the BioDivine framework, the results conducted i n Section 3.5 w i t h Parasim 
(http://pithya.ics.muni.cz/galaxy/u/martin/h/parasim-on-tcp-model-public) and Pithya (http:// 
pithya.ics.muni.cz/galaxy/u/martin/h/pithya-on-tcp-model-public) can be reproduced. 

3. Results and Discussion 

In this section, we apply the sequence of steps defined in Section 2.5 to the model of TCP metabolic 
pathway (Figure 1). 

The outcome of the workf low is a novel model , the scheme of w h i c h is shown i n Figure 4. 
It exhibits a modular structure, w h i c h was necessary to relieve the inverse model l ing process 
(Section 2.4). We decided on this concept because the fitting of al l new parts simultaneously 
w o u l d be practically impossible. Instead, only two to four parameters needed to be taken into 
account simultaneously. Due to this fact, the dedicated experimental data—capturing only partial 
behaviour—had to be obtained (Data S1-S3). 

3.1. Extended Assumptions 

Our model satisfies the general theoretical assumptions defined i n Section 2.5.1: (1) the standard 
non-metabolisable IPTG inducer has been used [61]; (2) E. coli BL21 (DE3) is a protease deficient B 
strain, and all experiments were conducted in a closed environment with a limited amount of nutrients; 
(3) the core of the model is an expression of heterologous genes causing experimentally-provable 
metabolic burden [19]; and (4) all experiments were preceded by the induction phase after which the 
bacterial population was i n stationary phase. Next, we assume the time frame of 5 h i n w h i c h al l 
metabolic pathway experiments and simulations were performed. 

Next, we specify an extended set of assumptions characterising this case study: 

1. We define a new variable called Bact standing for C D W (g/L) of E. coli population taken as 
0.39 g/L = 1 O D 6 0 0 [24]. 

2. We assume IPTG to be the only inducer for the synthetic pathway. Concentration of IPTG is 
considered to be constant i n the given time frame. 

3. Reversible reactions i n the TCP-degradation pathway are considered negligible. 
4. The initial concentration of substances (e.g., TCPo, GLYo, IPTGo) and the population (i.e., Bacto) 

determines the input for the system. 
5. Dynamics of individual enzymes is approximated as a constant function of time in the given time 

frame. Moreover, enzymes dynamics is considered to be independent on the size of the bacterial 
population i n the given time frame. 

6. Total conversion of T C P into G L Y is assumed to occur i n a sufficiently long time reflecting the 
known behaviour of the pathway. 

http://github.com/sybila/pithya-gui
http://pithya.ics.muni.cz
http://github.com/sybila/parasim
http://pithya
http://ics.muni.cz/
http://pithya.ics.muni.cz/galaxy/u/martin/h/parasim-on-tcp-model-public
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7. 

9. 
10. 

Viability of the bacterial population is given as the function of the pathway compounds toxicity, 
metabolic burden and the presence of nutrients (i.e., GLY). 
Toxic effects of the pathway compounds are considered to be mutually independent. 
Glycerol is the only assumed nutrient. 
We assume natural degradation (death rate) of the bacterial population. 

d[Bact] 
dt 

2[GLYJ 
dt 

d[TCP] 
dt 

d[( f l ) -DCP] 
dt 

d[(S)-DCP] 
dt 

d[ECH] 
dt 

= + 

+ 

g r o w t h 
o n G L Y 

t o x i c i t y 
by T C P 

t o x i c i t y 
o n E C H 

t o x i c i t y 
by G D L 

t o x i c i t y 
by C P D 

G D L in to 
G L Y 

u t i l i s a t i o n 
of G L Y 

T C P i n t o 
( R ) - D C P 

T C P i n t o 
( S ) - D C P 

i [ C P D ] 
dt 

j [GDL] 
dt 

= + 

= + 

= + 

= + 

= + 

T C P i n t o 
( R ) - D C P J 

( R ) - D C P 
i n t o E C H 

T C P i n t o 
( g ) - D C P 

( S ) - D C P 
i n t o E C H 

( R ) - D C P 
i n t o E C H + 

( S ) - D C P 
i n t o E C H 

E C H i n t o 
C P D 

E C H i n t o 
C P D 

C P D i n t o 
G D L 

C P D i n t o 
G D L 

G D L in to 
G L Y 

Figure 4. Proposed model scheme. A schematic description of the novel ODE model with highlighted 
extending partitions. Each partition (i.e., module) represents a linearly independent part of a particular 
equation. Each module has a unique semantic function. Note that some of the modules are used in 
more than one equation. The coloured modules represent entirely new parts of the final model and the 
grey modules were extended in this study. This modular feature was necessary to handle the fitting of 
such a complex model to the experimental data. 

We are aware of the fact that Assumption (5) makes a significant approximation. The assumption 
reflects our former studies, i n w h i c h we worked w i t h pre-cultured pre-induced resting cells. 
In particular, estimated enzyme concentrations have been set as the endpoint values determined 
at a certain time interval after the overnight induction (Section 2.1.2). 

3.2. Workflow Input: Synthetic TCP Degradation Pathway 

Dvorak and co-workers [18] tested three different forms of the enzyme DhaA (two of them mutant) 
i n order to improve the efficiency of the pathway. Nevertheless, we consider only the most effective 
form denoted DhaA31 (referred to here as D h a A for simplicity). This particular enzyme produces two 
different enantiomers of the D C P compound with a similar rate (fcCat,TCP,(R)-DCP — 0-58 ( s _ 1 ) as the 55% 
of 1.05 (s" 1) for (R)-DCP and fcCat,TCP,(S)-DCP = 0.47 (s" 1 ) as the 45% of 1.05 (s" 1 ) i n favor of (S)-DCP). 
However, the enzyme H h e C is enantioselective and prefers (i?)-DCP (fcCat,(R)-DCP — 1-81 ( s - 1 ) vs. 
^cat,(S)-DCP — 0-08 ( s - 1 ) , where the greater means the better). A s a consequence, (S)-DCP accumulates 
during the biodegradation process unt i l (i?)-DCP is consumed. Note that both enantiomers are 
supposed to be equally toxic to the host. 

In general, reactions catalysed by H h e C are reversible. However, i n this particular case, the 
catalytic efficiency (i.e., jp 1 ) of E c h A i n turning E C H into C P D is much higher than the catalytic 
efficiency of H h e C towards the reaction E C H —> (R,S)-DCP. Due to this fact, the reverse reaction was 
removed from the mathematical model ([23], Chapter 2). HheC also catalyses the reaction C P D G D L . 
The reverse reaction is compensated by a special k ind of competitive version of Michael is -Menten 
equation i n the reaction G D L —> G L Y of the mathematical model . Thorough research can be found 
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i n [23]. However, we d i d a comparative test wi th several simulations of the model w i t h competitive 
version of Michaelis-Menten from ([23], Chapter 2) and the simplified model containing only common 
Michaelis-Menten equations and, according to the results in Figure SI, we decided to use the simplified 
model instead (Figure S2). 

3.3. Step 1: Enzymatic Space Settings and Reduction 

Based on the s impli fying assumptions mentioned above, the concentration levels of D h a A , 
H h e C and E c h A are represented as constants i n the input mathematical model (Figure S2). In such 
settings, these constants can be understood as parameters. To extend the model w i t h respect to IPTG 
concentration and in agreement with Step 1 in Section 2.5.2, it is necessary to define functions describing 
the concentrations of enzymes depending on the concentration of IPTG. We extracted these functions 
by parameter fitting to experimental data obtained from densitometric analysis of enzyme cell-free 
extracts prepared from cells induced with different IPTG concentrations (more details in Appendix A) . 
To that end, we employed Michael is -Menten kinetics because the data showed a good agreement 
wi th its shape (Figure 5), although the M M is typically used for the description of a rate and not a 
concentration. The quantitative result of the fitting w i t h statistical evaluation is shown i n Table SI. 

DhaA (rnlVI) HheC (mM) 

0.0025 

0.0020 

0.0000 
0.5 1.0 

IPTG (mM) 

0.006 

0.004 

0.002 

0.000 
0.5 1.0 

IPTG (mM) 
1.5 

EchA (mM) 

# data 

fitted curve 

0.006-1 

0.004-

0.002 

0.000 I 
0.0 0.5 1.0 1.5 

IPTG (mM) 

Figure 5. Results of fitting to enzymes concentration data. Three plots show individual results of fitting 
to concentration data measured in various starting concentration levels of the inducer (IPTGo)—0.0, 
0.01, 0.025, 0.05, 0.2 and 1.0 (mM)—for three different enzymes: DhaA (top left); HheC (top right); 
and EchA (bottom). The experimental data are pictured as points and the results—fitted curves—are 
pictured as lines. Both axes show a concentration level in m M , the inducer on the x-axis and the 
particular enzyme on the y-axis of the particular plot. Error bars represent standard deviation values 
calculated from two independent experiments. 
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The initial growth of the functions is in perfect agreement with the switch-like influence when using 
a non-metabolisable inducer such as IPTG on Lad® / PiacUV5-T7 expression system [62,63] w h i c h is 
employed in heterologous plasmids containing genes of enzymes DhaA, HheC and EchA. The resulting 
functions of stable concentrations for particular enzymes are shown i n Equations (6)-(8), respectively: 

N . A Vmax,D • [IPTG] 
D h a A r - ' = K M , D + [IPTG] ( 6 ) 

r Vmaxji; [IPTG] 
H h e C t o t f l i " KMM + [IPTG] ( 7 ) 

R , A Vmax,E • [IPTG] 
E c h A > ° t a l = K M , E + [IPTG] ( 8 ) 

with V M A X , D = 0.001904, V M A X / H = 0.005391, and V ^ E = 0.004998 being m a x i m u m rate constants 
( s _ 1 ) and X M , D = 0.01749, K M , H = 0.008255, and K M , E = 0.004855 being Michaelis constants (mM). 

3.4. Step 2: Integration with Population Growth 

The original model does not take into account the bacterial population. Therefore, i n agreement 
wi th Step 2 i n Section 2.5.2, we introduce a mechanism explaining the dependency of the substrate 
(GLY) and the inducer (IPTG) on the population. The M o n o d equation is commonly used to explain 
bacterial population growth rate ]i, and, indeed, the results are i n good agreement wi th experimental 
data (Figure 6). For the sake of completeness, we have exemplified several different alternatives 
(Tessier ([64], i n French), Moser [65], A i b a - E d w a r d s [66], Andrews [67], etc.). For the fu l l list of 
considered functions, see the comparative table (Table S2). Nevertheless, according to Figure S3, the 
best results were observed by M o n o d growth model defined i n Equations (9) and (10), where ]i is the 
specific growth rate, jimax is the maximum specific growth rate, K is the half-velocity constant, JGLY is 
the rate of substrate utilisation and Y is the yie ld coefficient. 

_ Y-max • [GLY] 
F ~ K + [GLY] W 

- 1 • U 
7GLY = (10) 

Traditional growth functions seem not to be sufficient to explain the effect of the metabolic burden 
caused by IPTG and heterologous genes expression, as displayed i n Figure S4. Thus, considering 
the experimental data i n Figure 7, we decided to use a specific function to model the gap between 
results for values t\ = 0.01 and ti = 0.05 of m M IPTGo- It seems that the Heaviside step function 
(Figure 3) is a straightforward option for the apparent step in-between resulting values. However, as 
we do not know the exact value of the breaking point, it is safer to assume the linear behaviour. Hence, 
we decided to employ the ramp function defined i n Figure 2 i n the w a y that the m a x i m u m specific 
growth rate constant jimax—estimated above using M o n o d growth function (Figure 6)—is replaced 
wi th the ramp function defining an actual growth rate from the interval of the maximum (jimax) and 
the m i n i m u m specific growth rate {]imin) parameterised w i t h IPTGo- The best result of the fitting is 
shown in Figure 8 and represents evidence of the metabolic burden caused by IPTG with heterologous 
genes expression. 

For the completeness, we also assume a death rate coefficient (iBact)/ the value of w h i c h fits 
approximately i n the range of [3.876 • 10~ 3,5.382 • 10~4] ( h _ 1 ) . The uncertainty of these values comes 
from the fact that the death rate is usually not the main interest of microbiologists, and also some 
methods of measurement make the death phase hard to discern ([68], Section 3.1.4). The origin 
of the range values is explained i n A p p e n d i x B and has the base i n [69]. Al though the range is 
an approximation, it is a good starting point for further investigation by parameter synthesis and 
robustness monitoring. 
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Bact G L Y 

0 2 4 6 8 10 0 2 4 6 8 10 

time (h) time (h) 

Figure 6. Results of fitting to population growth data. Two plots showing different results of fitting 
to population growth data from two points of view: (left) the particular results for C D W starting at 
0.0429 and ending at 0.468 g/L after 10 h of growth; and (right) the result for the substrate utilisation 
only starting at 10.12 and ending at 0.07 m M after 10 h of growth. The experimental data are pictured 
as points with standard error bars, the dashed lines show simulation data for initial values of Monod 
function (i.e., initial point of fitting), the solid lines show the results of fitting (Section 2.4.1) and the 
dotted lines represent the final results optimised by M C M C method of the FME package (Section 2.4.1), 
which show the best agreement with the experimental data. The x-axes show time of experiment in 
hours; the y-axis of the right plot shows the concentration of GLY in mM; and the y-axis of the left plot 
shows CDW in g/L of bacterial population (Bact). 

The decision of taking microbial population into account w o u l d not be complete without an 
understanding of the toxic effect of the pathway components. Here, the selection of the optimal 
function is not straightforward because no function has been made a standard for this purpose. 
Therefore, we investigated several functions (Appendix C). The best results are shown in Figures S5-S8 
for TCP, E C H , C P D and G D L , respectively Both D C P enantiomers were observed to have minimal 
effect on the population even for high doses (i.e., 4 m M ) . 

With respect to the nature of the experimental data, some of the results were far from the best 
fit. Notably, the case of time-series data for T C P concentration of 2 m M was the worst (Figure S5). 
However, in the long time horizon, the population stabilises more or less on the same C D W (Figure S9). 
This fact indicates some delay i n the cellular response to the presence of the toxic pollutant. 

A s we are interested i n an explanation, or at least a mathematical description of the exacerbation 
effect, we introduced the Heaviside step function i n the expression describing the T C P toxic effect 
on the bacterial population regarding of IPTG concentration. In other words, the purpose of the step 
function is to improve the T C P toxicity function according to an observation from the experimental 
data such that it simulates the exacerbation when T C P and IPTG effects are combined. 
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Figure 7. Bacterial population growth data reflecting concentration of inducer. The plot shows curves of 
population growth on GLY for cultures reflecting different concentrations of IPTG prepared according 
to Section 2.1.4. A l l cultures—carrying plasmids with heterologous metabolic pathway—started at 
the same value but ended with different size of population depending on the initial concentration 
of the inducer (IPTG0): 0, 0.01, 0.05, 0.2, and 1 (mM). Note that the rising amount of IPTG led to 
progressive inhibition of bacterial growth. The most interesting is the big step from 0.01 to 0.05 of 
IPTG. This notable difference in the population on the relatively small interval of IPTG values and 
minimal changes in the population for the rest of IPTG concentrations shows the high sensitivity of the 
population to IPTGo. 

In one case, a simple evidence of the exacerbation phenomenon has been given i n [19] where 
Dvorak and co-workers compared the results of similar experiments of pre-induced (IPTG +) or 
non-induced (IPTG —) cells incubated i n buffer w i t h T C P (TCP +) or without (TCP —) (Figure 9 
displays al l four combinations: , — h , +—, and ++). The figure clearly shows some unexplained 
disruption amplifying the population extinction, although the data are not sufficiently convincing. 

In another, more extensive case, two datasets for the same type of experiment w i t h E. coli 
population degrading over time are compared for various init ial concentrations of IPTG—IPTGo 
(Figure 10). The first dataset represents the ind iv idua l effect of IPTG and the second one reflects 
the combined activity of IPTG and TCP. Remarkable is the fact that the exacerbation is more or less 
conserved for various values of IPTGo except for the case when IPTGo equals zero (displaying the 
toxic effect of T C P only). By acquiring a proportion of the median of the differences for various 
positive concentrations of IPTGo to the difference of the ind iv idua l T C P effect (where IPTGo equals 
zero) we have obtained a value of 1.82. Due to the fact it is dimensionless, it is suitable for a wide 
variety of models regardless of the units used for determination of the bacterial population. Therefore, 
we incorporate this value as a potential exacerbation parameter (exon = 1.82, whereas exoíí = 1) in the 
next step of our workflow. 
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, , B a c t at 0.0 m M I P T G , , B a c t at 0.01 m M I P T G , , B a c t at 0.05 m M I P T G 
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Figure 8. Results of fitting to population growth data reflecting metabolic burden caused by IPTG. The 
plot contains five figures, each showing fitting of the same model to the bacterial population growth data 
for different concentration of the inducer (IPTG) during 10 h long induction phase. The experimental 
data are pictured as points with standard error bars, the dashed lines show simulation data for initial 
values of the model function (i.e., initial point of fitting), the solid lines show the results of fitting 
and the dotted lines represent the final results optimised by M C M C method of the FME package 
(Section 2.6), which show the best agreement with the experimental data. The model with the best fit 
appears to be an enhanced Monod function where the maximum growth rate constant is substituted by 
the ramp function (defined in Figure 2) going from the maximum growth rate to the minimum growth 
rate reflecting the metabolic burden effect of the gradually-growing concentration of IPTG. The x-axes 
show the time of experiment in hours while the y-axes show CDW in g/L. 

I P T G - - + + 
T C P - + - + 

Figure 9. Evidence of exacerbation effect of IPTG on toxicity caused by TCP. Combined effect of 
metabolic burden caused by 0.2 m M IPTG and toxicity caused by TCP on E. coli BL21(DE3) cells 
carrying empty plasmids pCDF and pETDuet is displayed as the percentage of survived cells (blue 
bars) after induction in medium with or without 2 m M TCP. Pre-induced (IPTG +) or non-induced 
(IPTG —) cells were incubated in buffer with TCP (TCP +) or without (TCP —). The separate negative 
effects of TCP (orange), IPTG (gray), and the exacerbation of TCP toxicity in cells pre-induced with 
IPTG (yellow) are indicated. Error bars represent standard deviations calculated from at least five 
independent experiments. Note that experimental data come from [19]. 
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IPTG only • IPTG with TCP • difference 

-300 
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Figure 10. Exacerbation of TCP toxicity in Escherichia coli BL21(DE3) bearing synthetic TCP pathway by 
IPTG. The leftmost column in each dataset represents the population of cells pre-induced with various 
concentrations of IPTG. The middle column of each dataset shows the population of survived cells 
pre-induced with the same amount of IPTG after 5 h in the presence of 2 m M TCP. The rightmost column 
in each dataset shows the difference of the first and the second column (i.e., third = second — first). 
Note that the population in the first column of the first dataset is pre-induced with 0 m M IPTG and 
incubated in absence of TCP, which makes it a control group. The second column in the same dataset 
shows the sole effect of 2 m M TCP on the population. It is remarkable that the third columns in all other 
datasets seem to be in perfect match and approximately 1.82 times bigger than the same column in the 
first dataset. We explain this fact by the existence of the exacerbation effect. Different concentrations of 
IPTG were used for the induction of the TCP pathway expression from pCDF and pETDuet plasmids. 
Error bars represent standard deviations calculated from at least three independent experiments except 
for the rigthmost column in each dataset where error bars represent standard error of values in these 
columns. 

3.5. Step 3: Model Dynamics Exploration 

A s the outcome of the previous part of the workflow, we obtained the extended O D E model 
(Figure 11). It makes an input into Step 3 of the workf low (Section 2.5.2). For the purpose of the 
employed analysis techniques (parameter synthesis and robustness monitoring), we converted the 
model into two different formats compatible w i t h the used software (the BIO (https: / /github.com/ 
sybila/ode-generator/blob/master/README.md#model-syntax) format and the S B M L (http://sbml. 
org/Documents/Specifications) format, respectively). 

http://github.com/
http://sbml
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d[Bact] 
dt • [Bact] • R([IPTG],ti,t2, Vmax, Vmin) 

[Bad] • H([IPTG],ti,exo f f,ea;on) 

[GLY] 

K + [GLY] 
[Bact] • 7 B a 

Ki,TCp + [TCPp'.TCP 

[Bact] • fc,,ECH • (1 - e x p ( - - ^ S - ) ) - [Bact] • fc,jCPD • (1 - e x p ( - )) 
E C H CPD 

[Bact] • fc,jGDL • (1 - e x p ( - j ; ^ )) 

d[TCP] 
dt 

•Ki,GDL 

[ IPTG] fclR-[TCP] Vmax,D • [ I P T G ] fclG-[TCP] 
^ M , D + [ IPTG] K M A + [TCP] K M , D + [ I P T G ] KM,I + [ T C P ] 

d[(R)-BCP] Vmax,D • [ I P T G ] klR • [ T C P ] V W , H • [ I P T G ] • [ ( f l ) - D C P ] 
dt - [ I P T G ] KM,i + [ T C P ] K M , H + [ I P T G ] R + [ ( f l ) - D C P ] 

d [ ( 5 ) - D C P ] Vmax,D • [ I P T G ] fcis • [ T C P ] \/M A X,H • [ I P T G ] k2s • [(S)-DCP] 
dt - [ I P T G ] i ^ M . i + [ T C P ] KM.H + [ I P T G ] S + [(S)-DCP] 

d [ E C H ] Vmax,H • [ I P T G ] k2R • [(fl)-DCP] F M A X , E • [ I P T G ] fc3 • [ E C H ] 
dt 

Vmax.H 
- [ I P T G ] 

• [ I P T G ] 

^ M , 2 B + [(fl)-DCP] K M , E + [ I P T G ] 

k2s • [ ( S ) - D C P ] 

K M , 3 + [ E C H ] 

" • M , H "+ - [ I P T G ] ^ M , 2 S + [ ( S ) - D C P ] 

d [ C P D ] ^max,E • [ I P T G ] fc3 • [ E C H ] \ / M A X , H • [ I P T G ] k.± • [ C P D ] 
dt - [ I P T G ] K M , 3 + [ E C H ] K U T H + [ I P T G ] KM,4 + [ C P D ] 

d [ G D L ] Vmax,H • [ I P T G ] fc4 • [ C P D ] V m a x , E • [ IPTG] k5 • [GDL] 
dt - [ I P T G ] i^M,4 + [ C P D ] K M i E + [ I P T G ] + [GDL] 

d [ G L Y ] Vmax,E • [ I P T G ] k5 • [GDL] 
dt -f^M.E 4 

[Bact] 

- [ I P T G ] K M , 5 + [GDL] 

[GLY] 
_R([IPTG], t\, t2, Umax, Urnin) ' , 

h = 0 .01, t2 = 0.05, fimin = 0 .0746, , u m o l = 0.2686, K = 2 .7465 • 1 0 ~ 5 , 

7Bact = 0.0022, exoS = 1, exon = 1.82, h,Tcp = 15.131, n . j c p = 1.4256, 

J Q . T C P = 523.9533, fc,,ECH = 0.2653, K , , E C H = 0.3617, /C,, C PD = 0.05486, 

K , , C P D = 1.7178 • H T 6 , fc,GDL = 0.4866, K h G D L = 81.2447, Y = 0 .0838, kiR = 2088, 

feis = 1692, fc2fl = 6516, k2s = 288, k3 = 51732, fc4 = 8568, k5 = 14256, K M , i = 1.79, 
KM,2R = 2.49, KM,2S = 3 .33, K M , 3 = 0.09, KMA = 0.86, K M , 5 = 3.54, 

K n a x . D = 0.0019, KM,D = 0 .01749, y m a x , H = 0 .005391, KM,n = 0 .008255, 

Vmax.E = 0.004998, KM,E = 0 .004855 

Figure 11. A n ODE model of the extended TCP metabolic pathway. The model represents a chain 
reaction for biodegradation of TCP into GLY reflecting the E. coli population. Note that the rate 
constants of the original ODE model were rescaled from seconds (s _ 1 ) into hours (h _ 1 ) because the 
data used for fitting were sampled every hour. It concerns the original rate constants {k\R, k\s, k2R, k2s, 
fc3,fc4, k5). Units: fc*,V*,^*,7*(h_1); f„K»(mM); ex„, Y,w„(unitless). 

Next, we specify the model parameters that make the objectives of further analysis. While the 
previous parts of the workflow targeted the internal parameters adapting the model for the particular 
cell population, i n this part, we target the model parameters that can be perturbed and fine-tuned. 
In particular, we consider the following set of model parameters for tuning: 

1. Concentration of IPTG in mM: IPTG is an obvious candidate for tuning because many aspects 
of the model depend on it and it can be controlled easily i n the experimental environment (since 
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its concentration is considered constant dur ing the experiment, it can be referred by its initial 
concentration, denoted IPTGo). 

2. Size of bacterial population (Bact) in g/L: The initial population size, denoted Bacto, makes the 
crucial input of the model and it affects the model output—the final population size (reached in a 
given time). In general, the initial population size can be controlled i n experiments. 

3. Initial concentration of TCP (TCPo) in mM: The key input of the model that must be set in order 
to make the modelled metabolic pathway work; it can be easily set to any arbitrary value during 
the experiments. 

4. Death rate of the population (7Bact) i n h - 1 : The death rate is considered as a parameter because 
we are interested i n the dynamics of the microbial culture and the effects affecting the growth. 

Property 1. The complete degradation of TCP as fast as possible with the least accumulated toxicity. 

In [37], we declared the desired property of the model dynamics verbally (stated as Property 1). 
The model used i n that study d i d not concern the bacterial population. Therefore, the notion of 
toxicity was interpreted as an artificial accumulation of the inhibitory effect of the particular pathway's 
(intermediate) products. The inhibitory effect was experimentally measured and is traceable in [18,23]. 

Property 2. The complete degradation of TCP as fast as possible with the most survived bacteria. 

In the extended model, we are able to investigate directly the effect of the particular pathway's 
products on the bacterial population. To that end, the desired property is lifted to the population level 
resulting in Property 2. Due to the very abstract character, this property serves as a theoretical concept 
and several adjustments have to be performed to use it wi th computational analysis methods. 

First, the part "the complete degradation of TCP" is translated into "the TCP concentration is close 
to zero or below a minimal threshold (e.g., 0.01 of mM)". This is due to the possible errors of numerical 
solvers and the nature of the employed model approximation/abstraction algorithms. 

Second, the terms such as "as fast as possible" and "the most survived bacteria" cannot be interpreted 
numerically, w h i c h is necessary for the computing. For that reason, we use various numerical 
thresholds to instantiate such abstract terms i n the specified property. 

A s we addressed in Section 2.4.2, both considered approaches (parameter synthesis and robustness 
monitoring) employ a particular temporal logic for the specification of properties. We employ various 
properties compatible wi th both approaches and we utilise their specific advantages. 

The results of parameter synthesis contain comprehensive information about parameter values 
for a l l possible initial settings of variables i n considered ranges. In particular, not a l l positive results 
(parameter values satisfying the particular property) are automatically va l id i n al l initial settings of 
model variables. The parameter synthesis method computes only positive results for w h i c h there 
exist some va l id init ial values of model variables. It is also worth noting that, due to the model 
overapproximation performed inside the parameter synthesis procedure, the complement to the set of 
positive results does not necessarily imply a va l id negative result [37]. In other words, the so-called 
false-positives might exist. 

Property 3. The population will not drop below 0.08 g/L until TCP will degrade fully (drop below 0.01 mM). 

Addressing Property 2, we designed a suitable reformulation (Property 3), which is compatible 
with the parameter synthesis procedure. The results of parameter synthesis for this property are shown 
i n Figure 12. The displayed parameters have been synthesised i n given ranges. Every blue region 
depicts a set of values satisfying the stated property i n at least one initial value of model variables. In 
this particular case, the blue regions make joint projections across all dimensions (i.e., parameters and 
variables) of the modelled system. Consequently, the property is confirmed to be satisfied by every 
combination of parameters (respectively, initial conditions) i n the considered ranges. 
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Figure 12. Results of parameter synthesis process for Property 3. Inside the figure, one can see two plots 
with blue regions. Both plots show a combination of parameters and (or) variables of the model where 
each point represents the particular evaluation of considered parameters (or variables). Every blue 
region represents a set of evaluations satisfying the stated property in at least one initial condition 
of the model. Here, the blue regions make joint projections across all non-displayed dimensions (i.e., 
parameters and variables). Consequently, the property holds in every combination of initial conditions 
(respectively, parameters) in the particular ranges. 

Property 4. Eventually, there will happen a situation where the population never exceeds a low value 
(stays below 0.08 g/L forever) and TCP concentration stays above 0.01 mM (never fully degrades). 

To support the above results, we decided to consider a property w i t h the opposite meaning 
(Property 4). In particular, the analysis resulted w i t h no positive results w h i c h shows us a certain 
agreement w i t h the previous analysis. However, as we have already addressed, we cannot directly 
interpret an "empty result" due to potential existence of false-positives. Therefore, we decided to 
investigate Property 4 more deeply with the help of the robustness monitoring analysis (see the analysis 
of Property 7). 

Property 5. Eventually, there will happen a situation in which TCP concentration is currently above 0.01 mM 
and the population never exceeds a low value (stays below 0.08 g/L forever). 

A n interesting fact appears i n the analysis based on comparing Property 4 w i t h its weaker form 
represented by Property 5. A difference between the two properties is only i n the predicate about the 
T C P concentration. However, for the parameter synthesis method, the difference is significant; as i n 
Property 5, we do not require the concentration of T C P to be above 0.01 m M forever. In Figure 13, it is 
shown that for the weaker property there exist positive results. However, they appear only for the 
population death rate (parameter 7Bact) higher than 0.07 s - 1 , which is an overrated value. 

The parameter synthesis method works w i t h abstractions of systems dynamics that do not 
consider time explicitly. However, it allows exploring patterns of model dynamics globally (regardless 
of the concrete settings of init ial conditions). O n the contrary, the robustness monitoring method 
considers time but works locally (i.e., dynamics is simulated in time for a given set of initial conditions). 
Therefore, there is a chance of missing an interesting behaviour occurring for an initial condition which 
is not included i n the considered set. 
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T B a c t ( h - 1 ) B a c t o ( g / L ) 

Figure 13. Results of parameter synthesis process for Property 5. Inside the figure, one can see two plots 
with blue regions. Both plots show a combination of parameters and (or) variables of the model where 
each point represents the particular evaluation of considered parameters (or variables). Every blue 
region represents a set of evaluations satisfying the stated property in at least one initial condition 
of the model. Here, the blue regions make joint projections across all non-displayed dimensions (i.e., 
parameters and variables). Consequently, the property holds in every combination of initial conditions 
(respectively, parameters) in the particular ranges. 

Property 6. The population will never drop below half of its initial value in the 5 h scope and TCP will degrade 
(drop below 0.01 mM) in the 2.5 h scope at the same time. 

Property 6 gives another reformulation of the desired property that now includes timing aspects. 
It requires the entire T C P degradation to be realised i n a certain time limit. The particular results 
obtained w i t h robustness monitoring are shown i n Figure S10. For brevity, we present a simple 
diagram (Figure 14) showing that the change of the population death rate (7Bact) as wel l as the initial 
size of the population (Bacto) have practically no influence on this property. In Figure S l l , the range of 
the death rate coefficient is increased to the number of 0.1 ( h _ 1 ) , w h i c h is a considerably overrated 
value. However, the influence is still considered negligible. More interesting appears to be the effect of 
the TCP initial concentration (TCPo) on the satisfiability of Property 6. The dependency between TCPo 
and IPTGo is non-linear (Figure 15). 

(b) 

T C P 0 ( m M ) Bact 0 (g/L) TBactQi" 1 ) 

2.0 (0.024, 0.78) (0.0, 0.01) 

Figure 14. Diagram for satisfiability of Property 6 reflecting IPTGo- (a) A simple diagram presenting 
the qualitative results of robustness monitoring for Property 6. It shows the influence of IPTGo o n 

the satisfiability of the particular property. The two thresholds divide the area of influence into three 
sections. The left one which robustly violates the property, the right one—satisfying the property 
(robustly)—and the middle one where the result is not robust. This result holds for all combinations of 
the parameters (and variables) in the table (b). 

© I © | 0 
0.0094 0.0156 

I P T G Q (mM) 
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Property 7. The population dies eventually (drops below 0.01 g/L) while TCP does not degrade entirely (does not 
drop below 0.1 mM) in the 5 h horizon. 

-3 .9 0.1 

Figure 15. Results of robustness monitoring for Property 6 concerning TCPo- The Figure Shows a 
two-dimensional plot with various coloured circles pointing by their centre to the particular setting 
of the plotted parameters (or variables). Initial values of variables and considered parameters (if 
not displayed in any axis) are: Bact0 = 0.487 (g/L); GLY 0 , (R)-DCP 0, (S)-DCP0, E C H 0 , C P D 0 , G D L 0 , 
TCPo — 0 (mM); 7Bact — 0.0022 ( h - 1 ) . A l l the constants can be found in Figure 11. The shades of green 
colour imply a feasibility of the particular property in the particular initial setting while the shades of 
red imply a violation of the property—the darker the tone, the stronger the feasibility/violation. At the 
bottom of the plot, there is the feasibility scale mapped to real values. The plot represents a single layer 
of the entire parameter space. 

To justify the results of parameter synthesis obtained for Property 4, we formulate a similar 
property that is compatible w i t h the robustness monitoring method (Property 7). The results are 
shown i n Figure S12—they contain only negative values (the property is definitely not satisfied i n 
any sampled point). The summary of these results is available i n a compact table (Table 1). For the 
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reasonable range of the death rate coefficient, the results do not change significantly. However, there is 
some noticeable influence for the increased range of the death rate (up to 0.1 h _ 1 ) shown in Figure S13. 
Nevertheless, the obtained negative results support the previous outcome of parameter synthesis and 
even improve it by adding the quantitative information. 

Table 1. Results of robustness monitoring for Property 7. A simple table presents the relevant ranges of 
initial conditions (i.e., the concentration of variables and setting of parameters) which robustly violate 
Property 7. 

IPTGo (mM) TCP 0 (mM) Bact0 (g/L) 7Bact (h _ 1) 

(0.0,1.0) (0.0,4.0) (0.024, 0.78) (0.0, 0.01) 

Robustness monitoring proves to be useful for this type of models. O n the other hand, parameter 
synthesis approach is designed for models with a more complex relationship between variables where 
some interesting bifurcations can take place. 

4. Conclusions 

The effects of metabolites on the fitness of bacterial strains carrying artificial pathways are of 
great interest for the community of metabolic engineers. The adverse effects of toxic metabolites and 
metabolic burden on the host cells need to be considered and ideally even quantitatively characterised 
by the computational modell ing. Here, we present development of such a model for the E. coli 
BL21(DE3) strain overexpressing the artificial pathway for degradation of highly toxic environmental 
pollutant 1,2,3-trichloropropane (TCP). 

To assess the complex behaviour of the system, we created a unique mathematical model 
which combines population modeling w i t h prediction of effects of metabolite toxicity and burden 
caused by application of the standard synthetic inducer IPTG triggering expression of heterologous 
biodegradation pathway. We were interested i n conditions of the system i n which the biodegradation 
is efficient while population survives and we investigated the system under these conditions using 
state-of-the-art computational methods. 

First, we extended the original model of the metabolic pathway w i t h a new model variable 
describing the bacterial population growth over time. The new model reflects the initial concentration 
of the inducer (IPTGo). Second, we formalised the fol lowing features of the investigated system: (1) 
the metabolic burden effect caused by increased concentration of the inducer; (2) a highly toxic effect 
of TCP and other metabolites of the pathway; and (3) an exciting phenomenon of toxicity exacerbation 
occurred by the joint effect of the inducer (IPTG) and the pathway's substrate (TCP). Finally, using 
computational biology methods, we investigated the continuous parameter space of initial conditions 
and uncertain coefficients targeting the interesting properties of the model. We believe that the obtained 
results give a solid basis for further optimisation of the synthetic pathway i n the considered strain. 

Further refinement of the model is planned for future work. In particular, we aim at producing the 
data describing increasing enzyme concentrations i n time. That w i l l allow us to generalise the model 
by representing enzyme concentrations as model variables. Al though the model itself is fine-tuned 
wi th respect to the considered E. coli BL21(DE3) strain, it can provide a modell ing basis i n different 
scenarios where a non-metabolisable inducer is used to control a closed cell population environment in 
stationary phase. O n the computational side, the employed computational framework combining the 
carefully selected set of formal methods and simulation-based tools can be reused i n any modell ing 
case fitting the class of non-linear ODEs including the enzyme kinetics. 

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2076-2607/7/11/553/si, 
Data SI: IPTG growth curves; Data S2: Growth on 10 m M glycerol; Data S3: Toxicity on 10 m M glycerol; Figure SI: 
The comparative test of two mathematical models for biodegradation of TCP; Figure S2: The model of the 
metabolic pathway for biodegradation of TCP without reverse reactions; Figure S3: The comparative simulation 
of two bacterial growth functions; Figure S4: Evidence of need for proper function describing population growth 
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reflecting metabolic burden caused by IPTG; Figure S5: The results of fitting to population growth data reflecting 
toxicity caused by TCP; Figure S6: The results of fitting to population growth data reflecting toxicity caused by 
ECH; Figure S7: The results of fitting to population growth data reflecting toxicity caused by CPD; Figure S8: The 
results of fitting to population growth data reflecting toxicity caused by GDL; Figure S9: The results of fitting 
to population growth data reflecting toxicity caused by TCP—prolonged simulation; Figure S10: The results 
of robustness monitoring for Property 6; Figure S l l : The results of robustness monitoring for Property 6 with 
extended range of the death rate coefficient; Figure S12: The results of robustness monitoring for Property 7; 
Figure S13: The results of robustness monitoring for Property 7 with extended range of the death rate coefficient; 
Table SI: The quantitative results for fitting of the functions explaining the enzymes concentration reflecting IPTG; 
and Table S2: The results of fitting several growth functions to the same set of experimental data. 
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Abbreviations 
The following abbreviations are used in this manuscript: 

IPTG isopropyl-beta-D-thiogalactopyranoside 
TCP 1,2,3-trichloropropane 
DCP 2,3-dichloropropane-l-ol 
E C H epichlorohydrin 
CPD 3-chloropropane-l,2-diol 
GDL glycidol 
GLY glycerol 
DhaA haloalkane dehalogenase 
EchA epoxide hydrolase 
HheC haloalcohol dehalogenase 
M M Michaelis-Menten 
CDW cell dry weight 
ODE ordinary differential equations 
M C M C Markov chain Monte Carlo 
GUI graphical user interface 
CLI command-line interface 

Appendix A. The Experimental Data Used for the Fitting of Functions Explaining the Enzymes 
Concentration Determined at Respective IPTG Concentrations 

In Tables A l and A 2 , the results of the experiments published i n [19] are presented. These 
results contain data from two experiments, one of w h i c h is shown i n Figure A l . The tables show 
relative portions of enzymes i n total soluble protein content of cell-free extract for different starting 
concentrations of IPTG—the inducer used for induction of host cells (E. coli deg31) under conditions 
described i n Laboratory Methods. 

The total masses of enzymes ( 1 0 ° ^ L ) were calculated from value 4.02 (measured for 0.2 m M IPTG 
and coloured i n blue) appropriately for the rest of IPTG concentrations reflecting different portions of 
total enzymes (Column 2 i n Tables A l and A2). The total mass values were then used for calculation 
of the enzymes mass i n cell-free extract (Tables A 3 and A4) w i t h respect to the particular enzyme 
relative portion (Tables A l and A 2 , respectively). Then, using atomic mass values i n Table A 5 and 
enzyme masses in cell-free extract from two different experiments, we calculated molar concentrations 
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(mM) for all enzymes. F inal ly the median and standard deviation were calculated from these values 
(Table A6) and used for fitting, as described i n Section 3.3. 

Table A l . Relative fractions of enzymes from Experiment 1. 

IPTG (mM) Content in Cell-Free 
Extract (%) * 

DhaA31 
(Relative Portion) 

HheC 
(Relative Portion) 

EchA 
(Relative Portion) 

Total Mass 
v10 o i L ' 

1.0 
0.2 
0.05 
0.025 
0.01 
0.0 

50 
48 
40 
40 
22 
15 

0.19 
0.17 
0.13 
0.12 
0.16 
0.20 

0.39 
0.40 
0.38 
0.41 
0.36 
0.33 

0.42 
0.43 
0.49 
0.47 
0.48 
0.47 

4.19 
4.02 
3.35 
3.35 
1.84 
1.26 

* Calculated as a portion of total soluble protein content. 

Table A2. Relative fractions of enzymes from Experiment 2. 

IPTG (mM) Content in Cell-Free 
Extract (%) * 

DhaA31 
(Relative Portion) 

HheC 
(Relative Portion) 

EchA 
(Relative Portion) 

Total Mass 
v10 o i L ' 

1.0 
0.2 
0.05 
0.025 
0.01 
0.0 

60 
62 
50 
50 
42 
15 

0.15 
0.15 
0.13 
0.11 
0.11 
0.17 

0.39 
0.39 
0.38 
0.37 
0.37 
0.40 

0.46 
0.46 
0.49 
0.52 
0.52 
0.44 

3.890 
4.020 
3.242 
3.242 
2.723 
0.973 

:" Calculated as a port ion of total soluble protein content. 

(M) (a) (b) (c) (d) (e) (f) 

66.2 

18.4 

14.4 

Figure A l . Sodium dodecyl sulfate polyacrylamide gel electrophoresis of cell-free extracts obtained 
from E. coli deg31 cells induced with various concentrations of IPTG ((M) protein marker (116, 66.2, 45, 
35,25,18.4, and 14.4 kDa)): (a) 0.0 m M IPTG; (b) 0.01 m M IPTG; (c) 0.025 m M IPTG; (d) 0.05 m M IPTG; 
(e) 0.2 m M IPTG; and (f) 1.0 m M IPTG. Bands of DhaA31 (34 kDa), HheC (29 kDa) and EchA (35 kDa) 
are marked. 
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Table A3. Mass and molar concentration of enzymes in cell-free extract from Experiment 1. 

IPTG Total Mass 
<«M) ( Ä ) 

DhaA31 HheC EchA 
( m g ) ! 

DhaA31 
(mM) * 

HheC 
(mM) * 

EchA 
(mM) * 

1.0 
0.2 
0.05 
0.025 
0.01 
0.0 

4.19 
4.02 
3.35 
3.35 
1.84 
1.26 

79.6 
68.3 
43.6 
40.2 
29.5 
25.1 

163.3 
160.8 
127.3 
137.4 
66.3 
41.5 

175.9 
172.9 
164.2 
157.5 
88.4 
59.0 

2.24 x 10~3 

1.92 x 10~3 

1.22 x 10~3 

1.13 x 10~3 

8.29 x 10~4 

7.06 x 10~4 

5.57 x 10~3 

5.48 x 10~3 

4.34 x 10~3 

4.68 x 10~3 

2.26 x 10~3 

1.41 x 10~3 

4.82 x 10~3 

4.74 x 10~3 

4.50 x 10~3 

4.32 x 10~3 

2.43 x 10~3 

1.62 x 10~3 

* Calculated as a relative portion of the total mass (- f n ^ T \ x 100. * Calculated as ( „ m ^ T  
v \ 10 m L ) V D a • L 

Table A4. Mass and molar concentration of enzymes in cell-free extract from Experiment 2. 

IPTG 
(mM) 

Total Mass 
V 10 mL > 

DhaA31 HheC EchA 
(5S)* 

DhaA31 
(mM) * 

HheC 
(mM) * 

EchA 
(mM) * 

1.0 3.89 58.4 151.7 179.0 1.64 > < 10" 3 5.17 > < io--3 4.91 x 10--3 

0.2 4.02 60.3 156.8 184.9 1.69 > < 10" 3 5.34 > < io--3 5.07 x 10" -3 
0.05 3.24 42.1 123.2 158.9 1.18 > < 10" 3 4.20 > < io--3 4.36 x 10" -3 
0.025 3.24 35.7 120.0 168.6 1.00 > < io-3 4.09 > < io--3 4.62 x 10" -3 
0.01 2.72 30.0 100.8 141.6 8.42 > < io-4 3.44 > < io--3 3.88 x 10" -3 
0.0 9.73 x 10" 1 16.5 38.9 42.8 4.65 > < io-4 1.33 > < io--3 1.17 x 10" -3 

' Calculated as a relative portion of the total mass (- f n ^ T ) x 100. * Calculated as ( „ m ^ T  
v \ 10 m L I V D a • L / 

Table A5. Mass values of enzymes. 

DhaA31 (Da) HheC (Da) EchA (Da) 

35576.37 29333.07 36465.11 

Table A6. Molar concentration of enzymes in cell-free extract calculated as a median of the values in 
Tables A3 and A4 with standard deviation values (i.e., stdev columns). 

IPTG DhaA31(mM) HheC (mM) EchA (mM) 

(mM) Median stdev Median stdev Median stdev 

1.0 1.94 x 10--3 4.22 x 10" -4 5.37 x 10- 3 2.79 x 10" -4 4.87 > < 10" 3 5.97 x 10" -5 

0.2 1.81 x 10--3 1.60 x 10" -4 5.41 x 10- 3 9.69 x 10" -5 4.91 > < io-3 2.34 x 10" -4 
0.05 1.20 x 10" -3 2.79 x 10" -5 4.27 x 10- 3 9.90 x 10" -5 4.43 > < io-3 1.03 x 10" -4 
0.025 1.07 x 10--3 9.02 x 10" -5 4.39 x 10- 3 4.19 x 10" -4 4.47 > < io-3 2.16 x 10" -4 
0.01 8.35 x 10--4 9.45 x 10" -6 2.85 x 10- 3 8.30 x 10" -4 3.15 > < io-3 1.03 x 10" -3 
0.0 5.85 x 10--4 1.71 x 10" -4 1.37 x 10- 3 6.15 x 10" -5 1.40 > < io-3 3.15 x 10" -4 

Appendix B. The Origin of the Death Rate Coefficient 

We used the mean value of death rate i n percentage per generation (% p.g.) from article Robust 
growth of Escherichia coli [68] for E. coli strain B/r, which is close to the BL21 we used i n experiments. 
The particular value ranges from 0.5% p.g. to 1% p.g.. However, we need a death rate per hour ( h _ 1 ) 
i n our model . To achieve that, we d iv ided p.g. values w i t h the generation (doubling) time of the 
population i n our model. The growth rate (g) i n our model is i n the range [0.07,0.26] ( h _ 1 ) according 
to fitting of the model to the experimental data. Thus, the particular values of generation time (tg) are 
between 2.58 h and 9.29 h for the doubling of the population. Both growth rate and doubling time were 
obtained as a median from at least three experiments. The final death-rate-per-hour values—limiting 
the range—are the maximum and m i n i m u m (emphasised numbers) from Table A7 . 
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Table A7. The death rate (7) coefficients evaluated from different growth rates (g) using the generation 
time (tg) and percentage death rate per generation (% p.g.). 

tg(h) 7 (h _ 1) as 0.5% p.g. 7 (h-1) as 1% p.g. 

0.26 2.58 1.938 • 1(T 3 3.876 • 10 3 

0.07 9.29 5.382 • 10 4 1.076 - K T 3 

Appendix C. The List of Considered Inhibition Models 

In this step of modelling, we found a good model describing the bacterial population growth on a 
substrate (e.g., glycerol). In this case study, the model involves traditional Monod equation [28] as the 
growth rate function: 

U (Al ) 
Ks + [S] 

where u is the specific growth rate, jimax is the maximum specific growth rate for the culture, [S] is the 
substrate concentration, and Kg is the half-saturation constant (or the affinity constant). Both Um^x and Kg 
reflect intrinsic physiological properties of a particular type of microorganism, the substrate utilisation 
and the temperature of growth ([67], Chapter 3). 

The Monod equation can express the rate of change in the number of cells as well as the fluxion of 
the cell mass (both can be defined by [B]). Thus, the whole model of bacterial growth is: 

d[B] 
At 

/'max [S] 
Ks + [S] 

(A2) 

In general, we could use a different model as the growth rate function [52]. We only need to 
have some proper model and think of it as an abstract module describing population growth. In this 
way, we can use a different module to explain the inhibition of the population growth by a poisonous 
substance (e.g., a toxic water pollutant such as 1,2,3-trichloropropane, TCP) . However, there is no 
universal inhibition model. Therefore, we conducted several simulations w i t h various combinations 
of models to fit the experimental data properly. In the fol lowing list, [B], [S] and [X] stand for the 
bacterial population, the substrate concentration and the toxic substance concentration, respectively. 
The majority of the following equations consist of a growth module (e.g., Monod) and some inhibition 
module (separated by minus character). Equations (11)—(16) adopt a different form (in general called 
competitive inhibition [25]) using one module (e.g., Monod) extended by different types of inhibition: 

Monod + H i l l [27]: 

Monod + Aiba-Edward [65]: 

Monod + Andrews [66]: 

Monod + Haldane-Andrews [66]: 

Monod + Monod: 

Monod + Moser [64]: 

Monod + Tessier [63]: 

d[B 
~ďt 
d[B 
It 
d[B 
dt 

d[B 
dt 

d[B 
~ďi 
d[B 
dt 

d[B 
dt 

S] 
Ks + [S] 

s] 
Ks + [S] 

S] 
Ks + [S] 

s] 
Ks + [S] 

Pmax s] 
Ks + [S] 
Pmax S] 
Ks + [S] 
Pmax S] 
Ks + [SI 

k[X]n 

Kin + [X}» 
k\X] 

K x + [ X ] ' e X p \ K, 

k  

k[X] 

Kx + [X] + ^ 

k\X] 

\X] 

' KX+[X] 

k[xr 
J Kx+[X]n 

B] - f c i l - e x p [XI 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 
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Monod + Tessier-type [63]: 

competitive inhibition: 

non-competitive inhibition: 

uncompetitive inhibition: 

non-competitive inhibition 
using negative H i l l 

non-competitive inhibition 
using negative Moser 

non-competitive exponential 
inhibition 

d[B] 
dt 

d[B] 
dt 

d[B] 
dt 

d[B] 
dt 

d[B] 
dt 

d[B] 
dt 

d[B] 
dt 

[B] 

[B] 

[B] 

[B] 

[B] 

[B] 

[B] 

M S ] 
[B] -fcl exp 

K S (1 + 

[s] 
K s -

,x[S] 

[S] 

K S + [S](1-

fmax [S] 

Pmax [S] 

Ki" + [X]« 

k-K{ 

KS+[S] Ki + [X]n 

ftmaxß] k 
KS + [S]'K.IX\ 

-[X] 
exp 

-[X]-
(A10) 

( A l l ) 

(A12) 

(A13) 

(A14) 

(A15) 

(A16) 

where K i and Kx are inhibition constants explaining inhibitory effects of poisonous substance at higher 
concentrations; k is an inhibitory rate; and n is a coefficient explaining cooperativity (as defined in H i l l 
equation) or another biochemical property depending on the context. 
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