SEVCIK, J, Martin FALK, L MACUREK, P KLEIBLOVA, F LHOTA, J HOJNY, L STEFANCIKOVA, M Bartek J JANATOVA, J STRIBRNA, Z HODNY, L JEZKOVA, P POHLREICH and Z KLEIBL. Expression of human BRCA1δ17-19 alternative splicing variant with a truncated BRCT domain inMCF-7 cells results in impaired assembly of DNA repair complexes and aberrant DNA damageresponse. Cellular Signalling. Elsevier Science, 2013, vol. 25, No 5, p. 1186-1193. ISSN 0898-6568. Available from: https://dx.doi.org/10.1016/j.cellsig.2013.02.008.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Expression of human BRCA1δ17-19 alternative splicing variant with a truncated BRCT domain inMCF-7 cells results in impaired assembly of DNA repair complexes and aberrant DNA damageresponse
Authors SEVCIK, J, Martin FALK, L MACUREK, P KLEIBLOVA, F LHOTA, J HOJNY, L STEFANCIKOVA, M Bartek J JANATOVA, J STRIBRNA, Z HODNY, L JEZKOVA, P POHLREICH and Z KLEIBL.
Edition Cellular Signalling, Elsevier Science, 2013, 0898-6568.
Other information
Original language English
Type of outcome Article in a journal
Country of publisher Czech Republic
Confidentiality degree is not subject to a state or trade secret
Impact factor Impact factor: 4.471
Doi http://dx.doi.org/10.1016/j.cellsig.2013.02.008
Tags International impact, Reviewed
Changed by Changed by: doc. RNDr. Martin Falk, Ph.D., učo 9835. Changed: 19/12/2019 13:31.
Abstract
Alternative pre-mRNA splicing is a fundamental post-transcriptional regulatory mechanism. Cancer-specific misregulation of the splicing process may lead to formation of irregular alternative splicing variants (ASVs) with a potentially negative impact on cellular homeostasis. Alternative splicing of BRCA1 pre-mRNA can give rise to BRCA1 protein isoforms that possess dramatically altered biological activities compared with full-length wild-type BRCA1. During the screening of high-risk breast cancer (BC) families we ascertained numerous BRCA1 ASVs, however, their clinical significance for BC development is largely unknown. In this study, we examined the influence of the BRCA1δ17-19 ASV, which lacks a portion of the BRCT domain, on DNA repair capacity using human MCF-7 BC cell clones with stably modified BRCA1 expression. Our results show that overexpression of BRCA1δ17-19 impairs homologous recombination repair (sensitizes cells to mitomycin C), delays repair of ionizing radiation-induced DNA damage and dynamics of the ionizing radiation-induced foci (IRIF) formation, and undermines also the non-homologous end joining repair (NHEJ) activity. Mechanistically, BRCA1δ17-19 cannot interact with the partner proteins Abraxas and CtIP, thus preventing interactions known to be critical for processing of DNA lesions. We propose that the observed inability of BRCA1δ17-19 to functionally replace wtBRCA1 in repair of DNA double-strand breaks (DDSB) reflects impaired capacity to form the BRCA1-A and -C repair complexes. Our findings indicate that expression of BRCA1δ17-19 may negatively influence genome stability by reducing the DDSB repair velocity, thereby contributing to enhanced probability of cancer development in the affected families.
Links
GBP302/12/G157, research and development projectName: Dynamika a organizace chromosomů během buněčného cyklu a při diferenciaci v normě a patologii
Investor: Czech Science Foundation
PrintDisplayed: 25/8/2024 13:42