J 2019

On the achievable average degrees in 2-crossing-critical graphs

HLINĚNÝ, Petr and Michal KORBELA

Basic information

Original name

On the achievable average degrees in 2-crossing-critical graphs

Authors

HLINĚNÝ, Petr (203 Czech Republic, guarantor, belonging to the institution) and Michal KORBELA (703 Slovakia, belonging to the institution)

Edition

Acta Math. Univ. Comenianae, 2019, 0231-6986

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Slovakia

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

URL

RIV identification code

RIV/00216224:14330/19:00112160

Organization unit

Faculty of Informatics

UT WoS

000484349000067

Keywords in English

graph; crossing number; crossing-critical

Tags

formela-conference
Změněno: 6/5/2020 17:14, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

c-Crossing-critical graphs are the minimal graphs requiring at least c edge crossings in every drawing in the plane. The structure of these obstructions is very rich for every c>=2. Although, at least in the first nontrivial case of c=2, their structure is well understood. For example, we know that, aside of finitely many small exceptions, the 2-crossing-critical graphs have vertex degrees from the set {3, 4, 5, 6} and their average degree can achieve exactly all rational values from the interval [3+1/2 , 4+2/3]. Continuing in depth in this research direction, we determine which average degrees of 2-crossing-critical graphs are possible if we restrict their vertex degrees to proper subsets of {3, 4, 5, 6}. In particular, we identify the (surprising) subcases in which, by number-theoretical reasons, the achievable average degrees form discontinuous sets of rationals.

Links

MUNI/A/1018/2018, interní kód MU
Name: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace VIII.
Investor: Masaryk University, Category A
Displayed: 14/11/2024 02:59