BOHUSLAVOVÁ, Olga, Petr SMILAUER and Josef ELSTER. Usnea lichen community biomass estimation on volcanic mesas, James Ross Island, Antarctica. Polar Biology. New York: Springer, 2012, vol. 35, No 10, p. 1563-1572. ISSN 0722-4060. Available from: https://dx.doi.org/10.1007/s00300-012-1197-0.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Usnea lichen community biomass estimation on volcanic mesas, James Ross Island, Antarctica
Authors BOHUSLAVOVÁ, Olga (203 Czech Republic, guarantor, belonging to the institution), Petr SMILAUER and Josef ELSTER.
Edition Polar Biology, New York, Springer, 2012, 0722-4060.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10619 Biodiversity conservation
Country of publisher United States of America
Confidentiality degree is not subject to a state or trade secret
WWW Full Text
Impact factor Impact factor: 2.006
RIV identification code RIV/00216224:14310/12:00107108
Organization unit Faculty of Science
Doi http://dx.doi.org/10.1007/s00300-012-1197-0
UT WoS 000308331600011
Keywords in English Non-destructive field methods; Lichen biomass estimation; Usnea species; Maritime Antarctica; Image analysis
Tags rivok
Tags International impact, Reviewed
Changed by Changed by: Mgr. Marie Šípková, DiS., učo 437722. Changed: 9/1/2020 09:36.
Abstract
Ground macrolichens dominated by several species of fruticose Usnea spp. with foliose Leptogium puberulum constitute an important component of the terrestrial ecosystem of James Ross Island. Long-term monitoring of lichen communities in respect to their reaction to ongoing climatic changes in this part of Antarctica became a research task for scientists in recent years. The non-destructive estimation of lichen biomass provides data necessary for the management and protection of Antarctica. We have developed and tested the methodology of non-destructive estimation of biomass of fruticose Usnea species, which predominate in the ice-free tertiary basalt outcrop areas on James Ross Island. In 38 experimental squares (non-destructive measurements), the density and height of lichen thalli were measured and digital photography with ground cover evaluation was performed. Lichen biomass was harvested from 14 experimental squares and analysed for dry mass, chlorophyll a, b content, and thalli surface area (TSA). Predictive linear models were constructed from available non-destructively measured variables with the aim to maximize predictive accuracy for the destructively measured attributes. A total of 82.3 % of variability in the TSA values was explained (87.5 % for biomass determination). Cross-validated prediction error for lichen TSA estimation was 423 cm(2) (11.5 % of the average TSA). In the case of lichen dry mass determination, cross-validated prediction error was 4.53 g m(-2) (7.3 % of the average dry mass). This study proves that macrolichens in maritime Antarctica can be monitored non-destructively by simple field methods combining digital photography and measurements of lichen thalli in botanical squares.
PrintDisplayed: 26/7/2024 15:29