J 2019

Growth Rates of the Electrostatic Waves in Radio Zebra Models

BENÁČEK, Jan a Marian KARLICKÝ

Základní údaje

Originální název

Growth Rates of the Electrostatic Waves in Radio Zebra Models

Autoři

BENÁČEK, Jan (203 Česká republika, garant, domácí) a Marian KARLICKÝ (203 Česká republika)

Vydání

Astrophysical Journal, Chicago, University of Chicago Press, 2019, 0004-637X

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 5.746

Kód RIV

RIV/00216224:14310/19:00112939

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000480323000002

EID Scopus

2-s2.0-85071978806

Klíčová slova anglicky

instabilities; methods: analytical; methods: numerical; planets and satellites: individual (Jupiter); pulsars: individual (Crab Nebula pulsar); Sun: radio radiation

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 27. 3. 2020 18:18, Mgr. Marie Novosadová Šípková, DiS.

Anotace

V originále

Zebras were observed not only in the solar radio emission but also in radio emissions of Jupiter and the Crab Nebula pulsar. In their models, growth rates of the electrostatic waves play an important role. Considering the plasma composed from the thermal background plasma and hot and rare component with the Dory-Guest-Harris distribution, we compute the growth rates. and dispersion branches of the electrostatic waves in the omega - k(perpendicular to) domain. We show complexity of the electrostatic wave branches in the upper-hybrid band. In order to compare the results, which we obtained using the kinetic theory and particle-in-cell (PIC) simulations, we define and compute the integrated growth rate Gamma, where the "characteristic width" of dispersion branches was considered. We found a very good agreement between the integrated growth rates and those from PIC simulations. For maximal and minimal G we showed locations of dispersion branches in the omega - k(perpendicular to) domain. We found that G has a maximum when the dispersion branches not only cross the region with high growth rates., but when the dispersion branches in this region are sufficiently long and wide. We also mentioned the effects of changes in the background plasma and hot component temperatures.