2019
Growth Rates of the Electrostatic Waves in Radio Zebra Models
BENÁČEK, Jan a Marian KARLICKÝZákladní údaje
Originální název
Growth Rates of the Electrostatic Waves in Radio Zebra Models
Autoři
BENÁČEK, Jan (203 Česká republika, garant, domácí) a Marian KARLICKÝ (203 Česká republika)
Vydání
Astrophysical Journal, Chicago, University of Chicago Press, 2019, 0004-637X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 5.746
Kód RIV
RIV/00216224:14310/19:00112939
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000480323000002
EID Scopus
2-s2.0-85071978806
Klíčová slova anglicky
instabilities; methods: analytical; methods: numerical; planets and satellites: individual (Jupiter); pulsars: individual (Crab Nebula pulsar); Sun: radio radiation
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 27. 3. 2020 18:18, Mgr. Marie Novosadová Šípková, DiS.
Anotace
V originále
Zebras were observed not only in the solar radio emission but also in radio emissions of Jupiter and the Crab Nebula pulsar. In their models, growth rates of the electrostatic waves play an important role. Considering the plasma composed from the thermal background plasma and hot and rare component with the Dory-Guest-Harris distribution, we compute the growth rates. and dispersion branches of the electrostatic waves in the omega - k(perpendicular to) domain. We show complexity of the electrostatic wave branches in the upper-hybrid band. In order to compare the results, which we obtained using the kinetic theory and particle-in-cell (PIC) simulations, we define and compute the integrated growth rate Gamma, where the "characteristic width" of dispersion branches was considered. We found a very good agreement between the integrated growth rates and those from PIC simulations. For maximal and minimal G we showed locations of dispersion branches in the omega - k(perpendicular to) domain. We found that G has a maximum when the dispersion branches not only cross the region with high growth rates., but when the dispersion branches in this region are sufficiently long and wide. We also mentioned the effects of changes in the background plasma and hot component temperatures.