GREGOROVIC, Jan and Lenka ZALABOVÁ. On Symmetric CR Geometries of Hypersurface Type. JOURNAL OF GEOMETRIC ANALYSIS. NEW YORK: SPRINGER, 2019, vol. 29, No 4, p. 3135-3159. ISSN 1050-6926. doi:10.1007/s12220-018-00110-1.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name On Symmetric CR Geometries of Hypersurface Type
Authors GREGOROVIC, Jan (guarantor) and Lenka ZALABOVÁ (203 Czech Republic, belonging to the institution).
Edition JOURNAL OF GEOMETRIC ANALYSIS, NEW YORK, SPRINGER, 2019, 1050-6926.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10101 Pure mathematics
Country of publisher United States of America
Confidentiality degree is not subject to a state or trade secret
WWW URL
Impact factor Impact factor: 0.924
RIV identification code RIV/00216224:14310/19:00108221
Organization unit Faculty of Science
Doi http://dx.doi.org/10.1007/s12220-018-00110-1
UT WoS 000488929600007
Keywords in English CR geometry; Homogeneous manifold; Webster metric
Tags rivok
Changed by Changed by: Mgr. Marie Šípková, DiS., učo 437722. Changed: 1/4/2020 10:48.
Abstract
We study non-degenerate CR geometries of hypersurface type that are symmetric in the sense that, at each point, there is a CR transformation reversing the CR distribution at that point. We show that such geometries are either flat or homogeneous. We show that non-flat non-degenerate symmetric CR geometries of hypersurface type are covered by CR geometries with a compatible pseudo-Riemannian metric preserved by all symmetries. We construct examples of simply connected flat non-degenerate symmetric CR geometries of hypersurface type that do not carry a pseudo-Riemannian metric compatible with the symmetries.
Links
GA17-01171S, research and development projectName: Invariantní diferenciální operátory a jejich aplikace v geometrickém modelování a v teorii optimálního řízení
Investor: Czech Science Foundation
PrintDisplayed: 29/9/2022 01:06