D
2020
Condensed U-Net (CU-Net): An Improved U-Net Architecture for Cell Segmentation Powered by 4x4 Max-Pooling Layers
AKBAS, Cem Emre and Michal KOZUBEK
Basic information
Original name
Condensed U-Net (CU-Net): An Improved U-Net Architecture for Cell Segmentation Powered by 4x4 Max-Pooling Layers
Edition
Iowa, IEEE 17th International Symposium on Biomedical Imaging, p. 446-450, 5 pp. 2020
Other information
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
electronic version available online
RIV identification code
RIV/00216224:14330/20:00115503
Organization unit
Faculty of Informatics
Keywords in English
Biomedical Image Segmentation; Convolutional Neural Networks; Deep Learning; Feature Learning; Max Pooling
Tags
International impact, Reviewed
V originále
Recently, the U-Net has been the dominant approach in the cell segmentation task in biomedical images due to its success in a wide range of image recognition tasks. However, recent studies did not focus enough on updating the architecture of the U-Net and designing specialized loss functions for bioimage segmentation. We show that the U-Net architecture can achieve more successful results with efficient architectural improvements. We propose a condensed encoder-decoder scheme that employs the 4x4 max-pooling operation and triple convolutional layers. The proposed network architecture is trained using a novel combined loss function specifically designed for bioimage segmentation. On the benchmark datasets from the Cell Tracking Challenge, the experimental results show that the proposed cell segmentation system outperforms the U-Net.
Links
EF16_013/0001775, research and development project | Name: Modernizace a podpora výzkumných aktivit národní infrastruktury pro biologické a medicínské zobrazování Czech-BioImaging |
|
LTC17016, research and development project | Name: Benchmarking algoritmů segmentace a sledování buněk | Investor: Ministry of Education, Youth and Sports of the CR, Benchmarking of algorithms for cell segmentation and tracking, INTER-COST |
|
MUNI/A/1050/2019, interní kód MU | Name: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace IX (Acronym: SV-FI MAV IX) | Investor: Masaryk University, Category A |
|
Displayed: 5/11/2024 07:46