D 2018

CAMELOT: design and performance verification of the detector concept and localization capability

OHNO, Masanori; Norbert WERNER; Andras PAL; Jakub RIPA; Gabor GALGOCZI et. al.

Základní údaje

Originální název

CAMELOT: design and performance verification of the detector concept and localization capability

Autoři

OHNO, Masanori (garant); Norbert WERNER (703 Slovensko, domácí); Andras PAL; Jakub RIPA; Gabor GALGOCZI; Norbert TARCAI; Zsolt VARHEGYI; Yasushi FUKAZAWA; Tsunefumi MIZUNO; Hiromitsu TAKAHASHI; Koji TANAKA; Nagomi UCHIDA; Kento TORIGOE; Kazuhiro NAKAZAWA; Teruaki ENOTO; Hirokazu ODAKA; Yuto ICHINOHE; Zsolt FREI a Laszo KISS

Vydání

BELLINGHAM, SPACE TELESCOPES AND INSTRUMENTATION 2018: ULTRAVIOLET TO GAMMA RAY, od s. 1-12, 12 s. 2018

Nakladatel

SPIE-INT SOC OPTICAL ENGINEERING

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10308 Astronomy

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Odkazy

Kód RIV

RIV/00216224:14310/18:00113613

Organizační jednotka

Přírodovědecká fakulta

ISBN

978-1-5106-1952-4

ISSN

UT WoS

000452819200148

EID Scopus

2-s2.0-85051867497

Klíčová slova anglicky

nanosatellites; gamma-ray bursts; scintillators; localization

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 10. 11. 2022 12:29, Mgr. Marie Novosadová Šípková, DiS.

Anotace

V originále

A fleet of nanosatellites using precise timing synchronization provided by the Global Positioning System is a new concept for monitoring the gamma-ray sky that can achieve both all-sky coverage and good localization accuracy. We are proposing this new concept for the mission CubeSats Applied for MEasuring and LOcalising Transients (CAMELOT). The differences in photon arrival times at each satellite are to be used for source localization. Detectors with good photon statistics and the development of a localization algorithm capable of handling a large number of satellites are both essential for this mission. Large, thin CsI scintillator plates are the current candidates for the detectors because of their high light yields. It is challenging to maximize the light-collection efficiency and to understand the position dependence of such thin plates. We have found a multi-channel readout that uses the coincidence technique to be very effective in increasing the light output while keeping a similar noise level to that of a single channel readout. Based on such a detector design, we have developed a localization algorithm for this mission and have found that we can achieve a localization accuracy better than 20 arc minutes and a rate of about 10 short gamma-ray bursts per year.