J 2016

BAUTIN BIFURGATION OF A MODIFIED GENERALIZED VAN DER POL-MATHIEU EQUATION

KADEŘÁBEK, Zdeněk

Basic information

Original name

BAUTIN BIFURGATION OF A MODIFIED GENERALIZED VAN DER POL-MATHIEU EQUATION

Authors

KADEŘÁBEK, Zdeněk (203 Czech Republic, guarantor, belonging to the institution)

Edition

Archivum Mathematicum, Brno, Masarykova univerzita, 2016, 1212-5059

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Czech Republic

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

RIV identification code

RIV/00216224:14310/16:00108261

Organization unit

Faculty of Science

UT WoS

000411947900005

Keywords in English

Van der Pol-Mathieu equation; periodic solutions; autonomous system; generalized Hopf bifurcation; Bautin bifurcation; averaging method; limit cycles

Tags

Tags

International impact, Reviewed
Změněno: 15/4/2020 11:01, Mgr. Marie Šípková, DiS.

Abstract

V originále

The modified generalized Van der Pol-Mathieu equation is generalization of the equation that is investigated by authors Momeni et al. (2007), Veerman and Verhulst (2009) and Kaderabek (2012). In this article the Bautin bifurcation of the autonomous system associated with the modified generalized Van der Pol-Mathieu equation has been proved. The existence of limit cycles is studied and the Lyapunov quantities of the autonomous system associated with the modified Van der Pol-Mathieu equation are computed.

Links

GAP201/11/0768, research and development project
Name: Kvalitativní vlastnosti řešení diferenciálních rovnic a jejich aplikace
Investor: Czech Science Foundation
MUNI/A/1490/2014, interní kód MU
Name: Matematické struktury
Investor: Masaryk University, Category A