MUNI C4E

Cyber Situation Awareness via IP Flow Monitoring

NOMS 2020 – Dissertation Digest April 23, 2020

Tomas Jirsik and Pavel Celeda

Cyber Situation Awareness

Know your network

Specifics of application in cyberspace

- Performance speeds of events
- Perception only by sensors

IP Flow Monitoring

Network visibility since 1991

Connection-oriented network observation

Src IP Addr:Port

209.85.135.147:80

Aggregates packet by flow keys

Purpose

Flow start

09:41:21.763

09:41:21.893

- Network reporting and analysis
- Network performance monitoring
- Attack and Anomaly Detection

Duration Proto

0.101

0.031

TCP

TCP

Contemporary Challenges

Are we still aware?

Extended Information

4

Analysis Delays

Contemporary Challenges

Are we still aware?

IP Flow Monitoring needs to evolve

to maintain cyber situation awareness

Course of our Research

Step by step

$\Box \rightarrow \Theta \rightarrow \Sigma$

Host Identification

From holistic to detailed view

$\Box \rightarrow \Theta \rightarrow \Sigma$

Operating System Fingerprinting

Static networks

Methods

TCP/IP parameters, User-Agent, Specific Domains, Combination

# of unique OS	# of IP in A	% of all A	# of IP in B	% of all B
1	7898	87.059	3996	95.989
2	1071	11.806	159	3.819
3	80	0.882	7	0.168
> 3	23	0.253	1	0.024
Total	9072	100	4163	100

A - whole network, **B** - dynamically addressed subnets removed

T. Jirsik and P. Celeda. "Identifying Operating System Using Flow-Based Traffic Fingerprinting". In: Advances in Communication Networking. Cham: Springer International Publishing, 2014, pp. 70–73. isbn: 978-3-319-13488-8

Operating System Fingerprinting

Dynamic networks

M. Lastovicka, T. Jirsik, P. Celeda, S. Spacek, and D. Filakovsky. "Passive OS Fingerprinting Methods in the Jungle of Wireless Networks". In: 2018 IEEE/IFIP Network Operations and Management Symposium. Taipei, Taiwan: IEEE, Apr. 2018

Fingerprinting in Encrypted Traffic

HTTPS traffic analysis

M. Husak, M. Cermak, T. Jirsik, and P. Celeda. "HTTPS traffic analysis and client identification using passive SSL/TLS fingerprinting". In: Eurasip Journal on Information Security 2016.1 (2016). doi: 10.1186/s13635-016-0030-7

Top N Statistics

Identification based on behavioral profile

Behavioral profile

- Top 30 statistics
- Features
 - Visited peers (dst IP address)
 - Visited services (dst ports)
 - Visited domains (HTTP host)
- Different time scales

Evaluation

- Availability
- Stability
- Uniqueness
- Host identification suitability

T. Jirsik, M. Cermak, and P. Celeda. "On Information Value of Top N Statistics". In: 2016 6th International Conference on IT Convergence and Security, ICITCS 2016. 2016, pp. 1–5. isbn: 9781509037643. doi: 10.1109/ICITCS.2016.7740357

Enhanced Monitoring

More data available

$\Box \rightarrow \bigcirc \Sigma$

HTTP Protocol Parsers

Evaluating application layer visibility

HTTP Visibility

- HTTP method, status code, host, request URI, content
- Optimization for high speed networks
- Flex-based parser

Performance comparison

- Throughput
- Number of parsed fields effect
- Packet content effect

P. Velan, T. Jirsik, and P. Celeda. "Design and Evaluation of HTTP Protocol Parsers for IPFIX Measurement". In: LectureNotes in Computer Science Vol. 8115. Springer Berlin, 2013, pp. 136–147. isbn: 978-3-642-40552-5.

Network Traffic Tunneling

Decapsulating the encapsulated

IPv6 Transition Mechanisms

- 6to4, Teredo,
- Parser to decapsulate traffic

Measurements

- Characteristics of IPv4 Tunnel Traffic Frequency of TTL Location of IPv4 and IPv6 Endpoints Duration and Size of Flows
- Characteristics of IPv6 Tunneled Traffic Distribution of HOP Limits Location of Tunnel Endpoints

Server IP	Ratio	Owner	Ctry
65.55.158.118	28.33 %	Microsoft	US
94.245.121.253	27.98%	Microsoft	GB
157.56.149.60	26.49%	Microsoft	US
157.56.106.184	10.18%	Microsoft	US
94.245.115.184	6.41 %	Microsoft	GB
83.170.6.76	0.04%	B. Schmidt	DE
170.252.100.131	0.01 %	Accenture	US
94.245.127.72	0.01 %	Microsoft	GB
94.245.121.251	0.01 %	Microsoft	GB
217.31.202.10	0.01 %	CZ.NIC	CZ

Teredo endpoints

M. Elich, P. Velany, T. Jirsik, and P. Celeda. "An Investigation into Teredo and 6to4 Transition Mechanisms: Traffic Analysis". In: Proceedings of Conference on Local Computer Networks, LCN. 2013, pp. 1018–1024. doi: 10.1109/LCNW.2013.6758546

Toward Real-time Awareness

From minutes to seconds

$\Box \rightarrow \Theta \rightarrow \Sigma$

Real-time IP Flow Analysis

Greater detail available

Real-time IP Flow Analysis

Taking advantage of data stream processing

Traditional processing	vs.	Stream processing
Data stored as persistent sets	Data	Infinite streams of individual data tuples
Large secondary memory	Storage	Small primary memory
Ad-hoc	Queries	Continuous
No real-time capabilities	Real-time	Real-time processing
Single-query	Optimization	Multi-query
Mature tools and technologies	Maturity	New tools and technologies

Real-time IP Flow Analysis

Distributed data stream processing

T. Jirsik, M. Cermak, D. Tovarnak, and P. Celeda. "Toward Stream-based IP Flow Analysis". In: IEEE Communications Magazine 55.7 (2017), pp. 70– 76. issn: 01636804. doi: 10. 1109/MCOM.2017.1600972

Stream4Flow

A prototype demonstrator

Features

- Full-stack solution
- High performance
- Easy deployment
- Real-time Analysis

Implemented Applications

- Statistics DNS, Protocol, Host
- Detections

Scans, Brute-force, DNS Resolvers

Next-generation IP Flow Monitoring

Lambda-architecture

Toward Real-time Network-wide Cyber Situation Awareness

Any data processed and analyzed

T. Jirsik and P. Celeda. "Toward Real-time Network-wide Cyber Situational Awareness". In: NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. Taipei, Taiwan: IEEE, 2018, p. 7. doi: 10.1109/NOMS.2018.8406166

and further research directions

$\Box \rightarrow \Theta \rightarrow \Sigma$

Main Objectives

What we have achieved

Investigate how IP flow monitoring can be improved to enhance the

cyber situation awareness.

Achieved Contributions

- Developed **methods for host identification** in both unencrypted and encrypted network traffic.
- Proposed and evaluated IP flow monitoring methods **that enhance network perception and comprehension** and respond to the emerging trends in the cyber situation awareness and the IP flow monitoring.

Provided **an option for reducing the delays** in the network IP flow monitoring workflow leading to the real-time cyber situation awareness.

Further Research

Promising research directions

- Stream-based Data Mining
- Correlation of Data Sources
- Attack Prediction
- Host Trustworthiness

MUNI C4E

C4E.CZ

Thank you for your attention

EUROPEAN UNION

European Structural and Investment Funds Operational Programme Research, Development and Education

Full dissertation available at https://is.muni.cz/th/ejynv/thesis.pdf