Detailed Information on Publication Record
2020
Structural Basis of Ca2+-Dependent Self-Processing Activity of Repeat-in-Toxin Proteins
KUBÁŇ, Vojtěch, P. MACEK, Jozef HRITZ, K. NECHVATALOVA, K. NEDBALCOVA et. al.Basic information
Original name
Structural Basis of Ca2+-Dependent Self-Processing Activity of Repeat-in-Toxin Proteins
Authors
KUBÁŇ, Vojtěch (203 Czech Republic, belonging to the institution), P. MACEK, Jozef HRITZ (703 Slovakia, belonging to the institution), K. NECHVATALOVA, K. NEDBALCOVA, M. FALDYNA, Peter ŠEBO (203 Czech Republic, belonging to the institution), Lukáš ŽÍDEK (203 Czech Republic, guarantor, belonging to the institution) and L. BUMBA
Edition
MBIO, Washington, D.C. American Society for Microbiology, 2020, 2150-7511
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10606 Microbiology
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 7.867
RIV identification code
RIV/00216224:14740/20:00115752
Organization unit
Central European Institute of Technology
UT WoS
000531071300056
Keywords in English
RTX toxins; cell adhesion; clip-and-link; host-pathogen interactions; nuclear magnetic resonance
Tags
International impact, Reviewed
Změněno: 14/10/2024 17:35, Ing. Jana Kuchtová
Abstract
V originále
The posttranslational Ca2+-dependent "clip-and-link" activity of large repeat-in-toxin (RTX) proteins starts by Ca2+-dependent structural rearrangement of a highly conserved self-processing module (SPM). Subsequently, an internal aspartate-proline (Asp-Pro) peptide bond at the N-terminal end of SPM breaks, and the liberated C-terminal aspartyl residue can react with a free epsilon-amino group of an adjacent lysine residue to form a new isopeptide bond. Here, we report a solution structure of the calcium-loaded SPM (Ca-SPM) derived from the FrpC protein of Neisseria meningitidis. The Ca-SPM structure defines a unique protein architecture and provides structural insight into the autocatalytic cleavage of the Asp-Pro peptide bond through a "twisted-amide" activation. Furthermore, in-frame deletion of the SPM domain from the ApxIVA protein of Actinobacillus pleuropneumoniae attenuated the virulence of this porcine pathogen in a pig respiratory challenge model. We hypothesize that the Ca2+-dependent clip-and-link activity represents an unconventional strategy for Gram-negative pathogens to adhere to the host target cell surface. IMPORTANCE The Ca2+-dependent clip-and-link activity of large repeat-in-toxin (RTX) proteins is an exceptional posttranslational process in which an internal domain called a self-processing module (SPM) mediates Ca2+ -dependent processing of a highly specific aspartate-proline (Asp-Pro) peptide bond and covalent linkage of the released aspartyl to an adjacent lysine residue through an isopeptide bond. Here, we report the solution structures of the Ca2+-loaded SPM (Ca-SPM) defining the mechanism of the autocatalytic cleavage of the Asp414-Pro415 peptide bond of the Neisseria meningitidis FrpC exoprotein. Moreover, deletion of the SPM domain in the ApxIVA protein, the FrpC homolog of Actinobacillus pleuropneumoniae, resulted in attenuation of virulence of the bacterium in a pig infection model, indicating that the Ca2+-dependent clip-and-link activity plays a role in the virulence of Gram-negative pathogens.
Links
LM2018133, research and development project |
| ||
LQ1601, research and development project |
| ||
90127, large research infrastructures |
|