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Using Game Theory in Public Domains: 
The Potential and Limitations of Security Games
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Abstract

Since its origins, when it was mainly connected to the fi eld of economics, game the-
ory has brought important theoretic insights into many domains. Besides biology, 
philosophy or computer science, its fi ndings have been applied to various fi elds of 
public policy. One specifi c area of public policy is that of security. Within the last 
two decades we have been witnesses to a signifi cant increase in eff orts to model 
security issues using tools of game theory and to derive political implications. Th e 
paper deals with the model of a Stackelberg security game and its real-world appli-
cations in security domains. Th e main aim and purpose of the paper is to provide a 
survey of selected cases of real-world deployed applications of the game-theoretic 
Stackelberg model in the area of public security and, based on the literature analysis, 
to discuss the potential and limitations of the model for policy- and decision-mak-
ers that are dealing with security measures on various governmental levels. Existing 
cases clearly indicate that the model can contribute to a better design and imple-
mentation of the security policy and help implement a better allocation of resources 
and thus potentially improve the eff ectiveness of security measures. On the other 
hand, the paper also discusses some limitations and potential future adjustments of 
the model together with points for further research.

Keywords:
game theory, sequential games, Stackelberg game, security systems, national 
security

1 University of Defence in Brno, Czech Republic.

2 Faculty of Economics and Administration, Masaryk University, Czech Republic.

The NISPAcee Journal of Public Administration and Policy, Vol. XIII, No. 2, Winter 2020/2021

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

10.2478/nispa-2020-0024

Open Access. © 2020 Zuzana Špačková, David Špaček, published by Sciendo.



250

The NISPAcee Journal of Public Administration and Policy, Vol. XIII, No. 2, Winter 2020/2021

1. Introduction

Security is a concern of major importance to governments (Tsai et al. 2009) and 
therefore an important topic for public policy on the national as well as the local 
level. Protecting inhabitants and national infrastructure are crucial tasks for each 
government. Airports, public-transportation networks or large public events are 
a few examples of potential targets vulnerable to terrorist attacks. When deciding 
which target to protect, security forces face the problem of limited security resourc-
es, which prevent non-stop coverage of all strategic targets. Taking, for example, an 
airport with multiple terminals, it has to be decided by security decision-makers 
which terminal to patrol in which moment, because usually it is not possible to 
cover all terminals, or areas, on a permanent basis. Let us suppose that police de-
cide to patrol one terminal (let us consider the most important one) constantly and 
leave the others uncovered. An adversary who seeks to harm the airport observes 
that only one terminal is patrolled and decides to strike at an uncovered one. If 
police change the strategy in a way that they switch to protect another terminal, the 
adversary will discover the new pattern as well and will attack a currently uncov-
ered terminal (probably the most important one). Th erefore, a way to improve the 
security of the airport is via a randomization of police actions, i.e. creating random-
ized patrolling schedules which would cast the adversary into uncertainty about the 
coverage of terminals. Th e idea behind this is that in the case of randomized police 
actions, it is impossible for the adversary to detect any pattern of patrolling, thus 
making it diffi  cult to choose a target to attack. And this can be used in various fi elds 
of national security, which is a rather complex public policy.

Other examples of situations in which patrolling schedules need to be de-
signed in order to deter (or apprehend) potential adversaries are problems of green 
security (e.g. protection against poachers), deterrence of fare evaders in urban 
transportation or protection of vulnerable urban areas. Available literature and the 
cases selected for this paper indicate that these situations can be modelled using 
means of game theory, and as such, game theory may contribute to designing and 
implementing security policies in various public domains. Game theory provides 
useful analytic tools in many domains: economics, biology, law, public policy and 
others. Global threats of terrorism, drug-smuggling, and other crimes have led to a 
signifi cant increase in research on game theory for security (Tambe 2011). Th is is 
important, because, for instance, realizing homeland security depends on a certain 
vision of security threats (Danila 2013). Game theory may help visualize and de-
scribe scenarios that can be used in the formulation of policies and instruments for 
achieving security, public safety etc., and for their actual use.

Security and crisis / emergency management policies and measures are usually 
an interdisciplinary theoretical and practical fi eld (as can clearly be seen in expla-
nations of homeland / national security policies – e.g. Noft singer et al. 2007; Morag 
2011; Cross, 2007). Such policies are also intergovernmental (May et al. 2011) – in 
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order for their measures to be eff ective and more effi  cient they require cooperation 
and coordination of multiple administrative levels and other actors. Th erefore not 
only the role of national government in homeland / national security policy has been 
discussed in the security-policy literature, but also the role of local governments 
and local actors. For instance, with regards to the United States, it was pointed out 
that the greater the national security threats, the more important the role of local 
policy (Clarke and Chenoweth 2006). Also the role of the supra-national level has 
been emphasized – e.g. because the EU has increased its eff orts to build common 
crisis-management capacity across the continent and has been seeking to both co-
ordinate national crisis and disaster authorities and build its own supranational ca-
pacities (Rhinard and Boin 20 09). Literature has also discussed whether security 
measures of individual governmental levels are mutually compatible and what de-
termines the potential eff ectiveness of security policy across federal and decentral-
ized systems (e.g. Friedmann and Cannon 2007; Gerber et al. 2007; Chappell and 
Gibson 2009; Birkland 2009). Th us, researchers may discuss if using game-theory 
tools can help increase the compatibility and the eff ectiveness of the implemen-
tation of security measures, e.g. through better allocation of shared resources in 
dealing with security issues. As Reddick (2008) concluded, security management 
can be improved when there is organizational collaboration. Cooperation and coor-
dination between the European states and various governmental levels has been on 
the rise, and these intergovernmental aspects of the emergency and security policies 
can also be seen in the current COVID-19 measures (Špaček 2020, forthcoming).

Where security is concerned, the value of the Stackelberg model has been fre-
quently discussed in available literature. Th is model represents a natural approxi-
mation of real-world situations in which adversaries fi rst engage in observing se-
curity measures taken by security forces and then commit to an attack. Algorithms 
based on a Stackelberg security model can help policy- and decision-makers as well 
as public managers in the area of security in deciding which protective strategy to 
adopt in situations where the protection of multiple targets (combined with limit-
ed security resources) is concerned. Th ey can also allow for more policy learning 
(Kamra et al. 2018).

Th e methodology of this paper is exploratory and based on secondary data 
analysis, not on our own empirical research. We did a literature search on Web of 
Science, Scopus and Google Scholar in order to fi nd and obtain academic papers 
and book chapters dedicated to explanations and testing of the Stackelberg security 
games. But we did not mean the paper to be an exhaustive study of existing litera-
ture. Our literature search clearly indicated that growing attention has been given 
to the Stackelberg model in available literature. We prepared this paper with the 
main aim to provide a survey of selected cases of real-world deployed applications 
of the game-theoretic Stackelberg model and, also, to discuss some further potential 
applications based on it in a specifi c public domain, security. Another motivation 
to prepare the paper was the fact that the Stackelberg model has been applied es-
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pecially in Western democracies (and especially in the USA – Kar et al. 2017), and 
such cases may be inspiring for creators of public policies in the security areas in the 
Central and Eastern European (CEE) region.

Th e paper is divided into a theoretical and an applied part. In its theoretical 
part, the model of Stackelberg security games is presented in detail, together with 
the necessary basis of game theory in order to be more readable for a larger au-
dience. Selected real-world applications of the model are discussed in the applied 
part of the paper. All these applications are based on a general model of a (Bayes-
ian) Stackelberg security game, incorporating its more or less important modi-
fi cations and adjustments. Possibilities of evaluating these real-world deployed 
security systems are discussed at the end of the paper together with implications 
for future research.

2. Game theory and the Stackelberg Model

Th e origins of game theory date to the fi rst half of the 20th century and are connect-
ed to the personality of John von Neumann who, in 1928, published his paper “Zur 
Th eorie der Gesellschaft sspiele” (Von Neumann 1928), and in 1944, together with 
Oskar Morgenstern, the famous Th eory of Games and Economic Behavior (Von Neu-
mann and Morgenstern 1944). Another very signifi cant and well-known personal-
ity of game theory formation was John Nash, who, besides other things, provided 
a solution to non-cooperative games which bears his name and has widely become 
known as the Nash equilibrium.

At the time of its formation, game theory was mainly connected to the fi eld 
of economics. Since then, it has brought important theoretic insights to other fi elds 
as well, e.g. biology, political science, philosophy, computer science etc. Within the 
last two decades we have borne witness to a signifi cant increase in eff orts to model 
security issues using tools of game theory in order to derive practical (political) 
implications based on them.

Th e games are most commonly modelled using so-called the normal form of a 
game (see, e.g., Tadelis 2013). A normal-form game consists of three sets: the set of 
players (“participants” of the game), the set of all potential strategies of each player 
and the set of players’ individual payoff  functions. Each game player chooses a set of 
his possible strategies (actions that he may take), also referred to as pure strategies. 
Th e payoff  function of a player defi nes his payoff  depending on his strategy and 
the strategies of all other players of the game. We suppose that all players seek to 
maximize their (expected) individual payoff s and that they possess full information 
about their co-players’ strategy sets and payoff  functions.

Normal-form games are most commonly represented by an n-dimensional 
array. In the case of two players, the game is represented by a matrix referred to as 
a payoff  matrix. A payoff  matrix includes information about the number of play-
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ers (i.e. two), their sets of pure strategies and the payoff s for each player relative 
to each possible outcome (i.e. the combination of player one’s strategy and player 
two’s strategy). Th e goal of each player in the game is to maximize their expected 
payoff  by choosing the optimal strategy. A dominant (pure) strategy of a player is 
the one that provides him the best outcome compared to all his other strategies (the 
dominated ones) regardless of the strategy chosen by a co-player. If there is such 
a strategy for a player, they will play it with certainty, as it is their optimal (pure) 
strategy. In case all players have optimal pure strategies the result of the game and 
the payoff s are deterministic. If there is no optimal pure strategy for a player, they 
commit to a mixed strategy which is a probability distribution on the set of their 
pure strategies (Owen 2013).

Th e Stackelberg model was fi rst introduced for studying duopoly competition 
(Von Stackelberg 1934) as a dynamic extension of the Cournot model and was rep-
resented by a non-symmetric sequential game in which two fi rms made decisions, 
in a given order, about their quantities (Webster 2014). In a Stackelberg game, two 
players are considered: a leader and a follower. Th ese players are not necessarily in-
dividuals; they may as well be groups cooperating on the basis of a common strategy 
(e.g. police on one side and a criminal organization on the other side). Th e leader 
commits to a strategy at fi rst. In the second step, the follower chooses his strategy 
in order to optimize his expected reward. Since he can observe the leader’s choice 
and respond to it (in a way to optimize his expected payoff ), one may consider that 
the follower is somehow advantaged. However, the advantage is on the side of the 
leader, as demonstrated by the payoff  matrix given in Table 1.

Table 1
Payoff  matrix of a leader-follower game

Follower

c d

Leader
a 3, 1 5, 0

b 2, 0 4, 2

Source: Author

Th e leader (a row player) has two possible pure strategies: a and b, and the 
follower’s (a column player’s) strategy set contains c and d. Th e players’ individual 
payoff s corresponding to all possible outcomes of the game (2x2 possibilities) are 
given by the payoff  matrix. (For example, if the leader decides to play strategy a and 
the follower chooses d, the leader’s payoff  is 5 and the follower’s 0.)

One can observe that if the game is played as a simultaneous one (both play-
ers deciding simultaneously without knowing the co-player’s decision), it has only 
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one pure strategy, the Nash equilibrium, with the leader playing a and the follower 
playing c. In the equilibrium, the leader’s payoff  is 3 and the follower obtains 1. For 
the leader strategy b is strictly dominated by strategy a, which means that whatever 
strategy the follower chooses, strategy a always guarantees a better outcome for the 
leader. (Th e follower does not have a dominant or dominated strategy. However, as 
they know that the leader is going to play a, their best response is c.)

In the case of playing a sequential game, the leader may commit to playing 
strategy b, and the follower, aft er having observed the action chosen by the leader, 
responds by playing d (which ensures them a higher payoff ). Th is results in payoff  
4 for the leader and 2 for the follower. If the leader commits to a mixed strategy of 
playing a and b with the same probability of 0.5, the follower will maximize their 
expected payoff  by playing d (ensuring them the expected reward of 1 against 0.5 if 
choosing c) and the leader’s expected payoff  will increase to 4.5. Th e leader’s strate-
gy randomization thus leads to an increase in their expected reward while increas-
ing the follower’s uncertainty at the same time.

Th e solution of the Stackelberg game is called Stackelberg equilibrium. A 
strong Stackelberg equilibrium assumes that the follower has perfect knowledge of 
the leader’s mixed strategy and that they react fully rationally to it in order to maxi-
mize their expected reward. In a strong Stackelberg equilibrium, none of the players 
have incentives to change the strategy, as for the leader it is given by their optimal 
mixed strategy and for the follower it is their optimal response to the defender’s 
mixed strategy.

3. Modelling real-world security scenarios as a Stackelberg 
Game: security games

Th e Stackelberg Security Game model has been immensely infl uential in security 
research since it was introduced roughly a decade ago (Sinha et al. 2018). Stack-
elberg games are well suited to studying security issues as they provide a natural 
approximation of the real-world security scenarios (An et al. 2012).

So-called security games are non-zero-sum games motivated by real-world 
security domains, built upon the model of the Stackelberg game. Th e motivation be-
hind this type of games is that we have limited security resources, which must pro-
tect multiple potential infrastructure targets of varying importance (Tambe 2011). 
Our resources do not allow us to protect (cover) all potential targets at all times so 
we must deploy them selectively. However, our adversaries may observe our ac-
tions (i.e. the schemes of protection we have adopted) and adapt their conduct (e.g. 
plan of attacks) in order to improve its eff ectiveness. Th e way here how to weaken 
the position of potential adversaries is via a randomization of (protective) actions. 
Unpredictability over defensive actions increases the adversaries’ uncertainty and, 
consequently, improves the protection of the targets.
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Modelling such defender-attacker paradigms through game theory may help 
policy- and decision-makers as well as public managers in the area of security. Th ey 
may help policy-makers as well as implementors (including security forces) think 
about the allocation of limited resources to protect infrastructure while consider-
ing diff erent weights of various targets and an adversary’s responses to diff erent 
protective strategies. As a solution to the problem, they may obtain a weighted ran-
domization strategy that aims at increasing effi  ciency and eff ectiveness of resources 
allocated to public security.

Th e two players in a Stackelberg security game are a defender (in reality, the 
given type of security forces) on one side and an attacker (adversary) on the other 
side. As pointed out in Tambe (2011), “security games have the characteristic that 
what is good for the attacker is bad for the defender and vice versa”. However, we 
do not require the loss to the attacker to be symmetric with the gain to the defend-
er (and vice versa), i.e., in general, we do not consider this game to be zero-sum.3 
Th ere has been a discussion in the literature related to the question why these games 
are non-zero-sum (see, e.g., Powell 2007); an elementary explanation being, for ex-
ample, that the adversary may view some targets as especially important for his 
audience, while these may not be of such importance to the defender (police). Or, as 
pointed out in Tambe (2011), even a failed attack may not be seen by the adversary 
as the worst outcome because of publicity related to this attempt or the fear it gener-
ates. Th e defender has several targets of varying importance to protect (cover) and 
limited resources restricting them to protect only some of them at a time (against 
the attacker). Each possible allocation of the resources represents one pure strategy 
on the defender’s part. Th e attacker chooses a target from a target set and each tar-
get chosen corresponds to one pure strategy. Th e basic logic behind the defender’s 
and attacker’s payoff s is that if the attacker attacks a target which is protected by the 
defender, their payoff  is worse compared to a situation in which the target was not 
covered. And, reversely for the defender, if a non-protected target is attacked, the 
defender’s payoff  is worse compared to a situation in which the target was covered.

To model such a situation using game theory, Tambe (2011) introduces a sim-
ple example of a small airport having two terminals (1 and 2) and only one police 
unit and one adversary. Th e police unit can protect only one terminal at a time while 
the adversary can attack one target. Terminal 1 represents a more important target 
than Terminal 2. Th e situation is illustrated by Table 2.

3 A game is called zero-sum if the sum of the payoff for all players equals zero in any outcome. In 
the case of a two-player game this means that the gain of one player is equal to the loss of the 
other player (see, e.g., Prisner 2014 or Shor 2005).
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Table 2
Payoff  matrix of a security game

Adversary

Terminal 1 Terminal 2

Defender
Terminal 1 5, –3 –1, 1

Terminal 2 –5, 5 2, –1

Source: Tambe (2011)

If the police protect Terminal 1 constantly (as it is the more important one), 
the adversary detects this deterministic strategy and commits to attacking Terminal 
2, which yields him a payoff  of 1 (and to the defender a loss of –1). If the police 
switch to protect Terminal 2 all the time, the adversary will observe this pattern 
again and will attack Terminal 1 (resulting in payoff s amounting to –5 for the de-
fender and 5 for the attacker). Th e solution here for the police is to randomize their 
actions and commit to a mixed strategy. If the police protect Terminal 1 within 
60 % of the days (and Terminal 2 during 40 %) it will bring them a better result. Th e 
adversary will have observed that the police protects Terminal 1 with a probability 
of 0.6 and Terminal 2 with a probability 0.4, however, he does not know which ter-
minal will be protected at the very moment of his planned attack. Th e adversary’s 
uncertainty rises and so does the expected reward for the police. (Th e adversary’s 
best response in this case would be to attack Terminal 1, which would lead to an 
expected payoff  of 1 for the police.)

It needs to be stressed here that this model assumes the adversary’s perfect 
knowledge of the defender’s mixed strategy, and that they will react rationally to 
this strategy, i.e., the adversary will act in order to maximize their expected payoff . 
Th e key question to the defender is which allocation of limited security resources 
(i.e. which vector of mixed strategy) will be the optimal one. In the simple example 
above (which represents a 2x2 game), the problem may be quite easily solved by 
hand. However, the task becomes more complex in real situations in which we may 
consider hundreds of targets and multiple police units.

In real-world settings, a security force (a defender) usually must face multi-
ple potential attackers who have diff erent evaluations over targets’ importance. In 
“Bayesian Stackelberg games” the uncertainty over diff erent adversary types adds to 
the model. In a two-player game, there is one leader (defender) type and several fol-
lower (attacker) types. Th e leader is not familiar with the follower’s type; however, 
he knows the probabilities of each follower type’s appearance in the game. Conse-
quently, instead of one, we obtain multiple payoff  matrices, each corresponding to a 
diff erent adversary type (and diff erent valuation of targets).
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Tambe (2011) demonstrates this situation by a scheme given in Table 3.

Table 3
Payoff  matrices of a Bayesian Stackelberg Game

Adversary
TYPE 1

Terminal 1 Terminal 2

Defender
Terminal 1 5, –3 –1, 1

Terminal 2 –5, 5 2, –1

Adversary
TYPE 2

Terminal 1 Terminal 2

Defender
Terminal 1 1, –2 –2, 3

Terminal 2 –3, 5 3, –1

Adversary
TYPE 3

Terminal 1 Terminal 2

Defender
Terminal 1 4, –2 –3, 3

Terminal 2 –5, 5 2, –2

Source: Tambe (2011)

Knowing the probabilities for the appearance of each follower type in the 
game, a Bayesian game can be transformed into a normal-form game using Harsanyi 
transformation (see, e.g., Wilczyński et al. 2016). Th is way we obtain a transformed 
game comprising one payoff  matrix with the leader having two strategies and the 
single follower, eight.

Th e key challenge here is, again, to fi nd the optimal mixed strategy (i.e. opti-
mal randomized allocation of limited resources) to the defender which maximizes 
his expected utility. As has been stated, security forces (police, army, security agen-
cies etc.) have limited resources, which prevents them from protecting all strategic 
targets at all times. Th e targets to be covered must thus be selected, which leaves 
the unprotected targets vulnerable to adversaries. Moreover, adversaries may carry 
out surveillance over the strategies implied by the defender and aim their attack to-
wards the targets which show up to be unprotected. Th e way to improve the security 
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of targets is via increasing the adversary’s uncertainty over the defender’s actions. 
Th e defender may achieve this goal by randomizing his actions. In order for this 
randomization to be eff ective, the weights of importance of the targets should be 
taken into consideration. When simple situations (such as the example of a small 
airport) are concerned, this randomization may be made by hand. However, the 
task becomes more diffi  cult with an increasing number of possible targets (to cover) 
and / or adversary types. Besides, human scheduling relates to several shortcomings. 
In addition to the burden to offi  cials executing such manual scheduling there is a 
risk for them to tend to adhere to patterns and routines. Computational techniques 
and fi tting soft ware prove to be more precise and effi  cient. Suitable soft ware per-
forms with considerably higher speed, is adapted to properly weigh the costs and 
benefi ts of diff erent actions and is ready to process various input variables.

Th e following sub-section provides a survey of selected real-world cases in 
which such soft ware based on Stackelberg games contributes to optimally allocat-
ing limited security resources. All these real-world deployed applications are based 
on the general model of the Bayesian Stackelberg security game using more or less 
important modifi cations of or adjustments to it.

4. Real-world applications of a Stackelberg Game

a) The Los Angeles Airport and ARMOR

Th e Bayesian Stackelberg model lies at the heart of the Assistant for Randomized 
Monitoring Over Routes (ARMOR) implemented by the Los Angeles International 
Airport since 2007. ARMOR represented the very fi rst real-world deployed applica-
tion of the model. Th is soft ware assistant helps the police by providing a random-
ized pattern for setting up checkpoints and canine unit patrols.

Los Angeles International Airport is the world’s fourth busiest airport and the 
second busiest airport in the USA, serving more than 80 million passengers per 
year (for the last three years, see https://www.lawa.org/en/lawa-investor-relations/
statistics-for-lax/volume-of-air-traffi  c) which makes of it an attractive potential tar-
get to attackers.

Th ere are six inbound roads into Los Angeles International Airport, and lim-
ited security resources prevent police from running permanent checkpoints at each 
of them. Similarly, there are nine terminals and the police do not have enough ca-
nine units (searching for potential explosives) to operate at all terminals all day. 
Access roads and terminals are potential targets to adversaries, while there are mul-
tiple types of the latter.

Modelling the tasks in question (i.e. to optimally set checkpoints or canine 
patrol routes at the Airport) as a Bayesian Stackelberg game makes it possible to 
randomize police actions, taking into consideration their weights (determined by 
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their complex costs and benefi ts) as well as uncertainty over adversary types. In 
terms of game theory, the goal is to fi nd an optimal mixed strategy for the leader 
to commit to, given that the follower may know this mixed strategy when choosing 
his strategy (Pita et al. 2008). In order to do so, ARMOR relies on an algorithm 
called DOBSS (Decomposed Optimal Bayesian Stackelberg Solver), which operates 
directly on the Bayesian representation without a need for Harsanyi transformation 
(see, e.g., Wilczyński et al. 2016) and solves the problem using linear programming.

Th e architecture of DOBSS consists of four key components: a front-end in-
terface through which an offi  cer can insert the information, a method for creating 
Bayesian Stackelberg game matrices, an implementation of DOBSS and a method 
for producing suggested schedules (Pita et al. 2008).

b) Federal Air Marshals Service and IRIS

While ARMOR generates randomized schedules for controlling vehicles arriving 
at the Los Angeles International Airport and canine patrols at the airport, other 
crucial security measures in transportation networks (airplanes, buses, trains) are 
represented by onboard patrols. Basically, from a game-theoretic point of view, we 
face a similar problem of limited security resources (i.e. security staff  available) over 
multiple potential targets. However, whilst in the case presented above the number 
of targets amounted to less than ten (six inbound roads or eight terminals), there are 
hundreds or thousands of vehicles to protect in transportation networks.

An example of a deployed system in transportation networks based on game 
theory is the one used by Federal Air Marshal Service (FAMS) in the USA since 
2009. Federal Air Marshals are armed federal law enforcement offi  cers deployed 
on passenger fl ights worldwide to protect airline passengers and crew against the 
risk of criminal and terrorist violence (see https://www.tsa.gov/about/jobs-at-
tsa/federal-air-marshal-service-and-law-enforcement). Th e soft ware scheduling 
assistant used by the FAMS is called Intelligent Randomization In Scheduling 
(IRIS) system. In a similar way to ARMOR, it models the problem in question 
(that is, how to optimally allocate available offi  cers on fl ights) based on a Stack-
elberg game. However, there are additional challenges relative to transportation 
networks which need to be taken into consideration. Th ese challenges relate to (1) 
the big number of potential targets that need to be processed by the system (tens 
of thousands of commercial fl ights per day), (2) lots of values to be entered (tens 
of thousands of payoff  values) and (3) hard scheduling constraints (the targets are 
moving vehicles). Th e DOBSS algorithm lying at the heart of ARMOR would not 
be able to handle such extensions in an effi  cient way. Th e IRIS system incorpo-
rates all three challenges mentioned above.

Initially, IRIS used the ERASER-C (Effi  cient Randomized Allocation of SEcu-
rity Resources – Constrained) algorithm, a mixed-integer linear programme (for 
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details see Tsai et al. 2009) before it switched to ASPEN (Accelerated SPars ENgine), 
based on the branch and price framework (see Jain et al. 2010).

Th e IRIS system consists of four modules: (1) an input module in which four 
classes of data need to be inserted (so that a representative Stackelberg game is gen-
erated): resource data (coverage ability and number of FAMs), target data (fl ight 
data), data required for risk assessment (number of passengers, fl ight path etc.) and 
supplementary data; (2) a back-end module comprising six components: forming 
of the target defi nition for the game, payoff  generation process, translation into a 
Stackelberg game, model solving, generation of a randomized schedule of probabil-
ity weights for each target and creation of actual sample schedules fort the FAMS. 
Th is information is displayed via (3) a display / output module. (4) A project manag-
er is a project-based system in which the input fi les can be stored (Tsai et al. 2009).

c) United States transportation security administration and GUARDS

A case of national-scale security deployment of a game-theoretic approach is that of 
the soft ware system GUARDS (Game-theoretic Unpredictable and Randomly De-
ployed Security) used by the United States Transportation Security Administration 
(TSA). TSA was created in 2011, in reaction to terrorist attacks in New York on 
11 September, with the mission to protect the nation’s transportation systems to 
ensure freedom of movement for people and commerce (see https://www.tsa.gov/). 
It focuses primarily on airport security and the prevention of aircraft  hijacking. 
(Th e above-mentioned Federal Air Marshals Service comes under the TSA’s super-
vision.) Th us the TSA mission covers more than 450 U.S. airports.

Th e soft ware scheduling assistant, GUARDS, designs the task of allocating the 
TSA’s limited resources over hundreds of security activities as a Stackelberg game 
in which the TSA acts as a defender (leader) having a set of targets to protect, a 
number of security activities for protecting each target and limited resources to 
be assigned to these security activities (Pita et al. 2011). An attacker observes the 
TSA’s resource allocation and then chooses a target to attack. What is diff erent com-
pared to the above-mentioned approaches, is that the model employed allows for 
both heterogeneous security activities and threats. Th ere are multiple areas at the 
airport (ticketing areas, waiting areas, cargo holding areas) for which the defender 
chooses among several security activities (perimeter patrols, screening cargo and 
employees etc.) while he may allocate more than one resource per area. Similarly, an 
adversary may execute heterogeneous attacks on an area (chemical weapons, active 
shooters, bombs). An improved model taking account of these extensions is re-
ferred to as Security Circumvention Games (SCGs). In SCGs, the TSA must choose 
some combination of security activities to execute within each area, and the attacker 
must reason over both which area to attack and which method of attack to execute 
based on the defender’s strategy (Pita et al. 2011). When computing the solutions, a 
compact representation of SCGs is used (in order to reduce the number of the de-
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fender’s strategies to be enumerated). Another challenge that the GUARDS system 
copes with is that of acquiring the appropriate knowledge needed to be considered. 
A two-phase knowledge acquisition process is employed, combining a centralized 
approach (gathering information common among all airports) and a decentralized 
one (inputting customized information by individual airports).

Th e system consists of three modules: 1) an input module in which quantifi -
able inputs (area data, security activities data and resource data) need to be inserted; 
2) a back-end module which generates the game, solves it and returns a sample 
schedule; and 3) a display / output module.

d) United States coast guard and PROTECT

Another deployed game-theoretic system is that used by the United States Coast 
Guard, in which a real maritime patrolling problem is modelled as a Stackelberg 
game.

Th e United States Coast Guard (USCG) look aft er the security of the coasts, 
ports and inland waterways in the U.S.A., which comprise many potential targets to 
attackers. Obviously, the USCG do not possess enough resources to cover all these 
targets permanently, and adversaries may observe any patterns in patrolling actions.

An application called Port Resilience Operational / Tactical Enforcement to 
Combat Terrorism (PROTECT) has assisted the USCG in allocating its patrolling 
resources at the Port of Boston since 2011. Building on a Stackelberg game frame-
work, PROTECT provides the solution as randomized patrol patterns which take 
into account the importance of diff erent targets, the adversary’s observation of ac-
tions taken by the USCG and their anticipated response to them.

In comparison with the soft ware types presented above, PROTECT introduc-
es several advances. Th e most signifi cant one is that it departs from the assumption 
of adversaries’ perfect rationality. Adopting fi ndings from behavioural game theory, 
it replaces this assumption with a model of a boundedly rational adversary using 
a quantal response model. As stated in An et al. (2012), this model suggests that 
instead of strictly maximizing utility, individuals respond stochastically in games: 
the chance of selecting a nonoptimal strategy increases as the cost of such an error 
decreases.

An algorithm called PASAQ (see Yang et al. 2012) is used and improved by a 
compact representation of defender strategies based on an analysis of their equiva-
lence and dominance.

PROTECT generates randomized schedules of patrols including the time 
when they should begin, the targets to be visited by each patrol and activities to be 
performed at each of them. Besides experimental analyses, a real-world data pro-
vided by the USCG prove this system to be successful (An et al. 2012).
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e) Los Angeles metro rail system and TRUSTS

Th e deployment of controls in a proof-of-payment transit system where passengers 
may enter and travel without actually having purchased a ticket is another problem 
which can be modelled using a Stackelberg game. Of course, the character of “dan-
ger” is completely diff erent to the above-mentioned situations. In this case, human 
lives are not in danger when fare evasion occurs, but public fi nance is. Otherwise, 
the assumptions to model the problem using a leader-follower game are met: the 
government do not have enough resources to cover all transit lines with controls, 
and so patrols are set selectively. Any patterns in such a setting may be observed 
and exploited by potential fare-evaders. Th e only possibility to discourage passen-
gers from fare-evading, given the limited resources, is to effi  ciently randomize the 
controls and minimize their predictability this way. Randomized schedules are of-
ten human-made; however, this constitutes a considerable burden to the offi  cers 
involved and, considering all the complexities in question, the outputs hardly rep-
resent an optimal allocation. Modelling the problem using game theory helps gen-
erate more effi  cient patrol schedules.

An example of a proof-payment transit system is the Los Angeles Metro Rail 
system. In 2012 an application called Tactical Randomization for Urban Security in 
Transit System (TRUSTS) was deployed there. TRUSTS models the situation as a 
Stackelberg game with one leader (the Los Angeles Sheriff ’s Department) and many 
followers, while each of them takes a fi xed route at fi xed time. Th e leader commits 
to a mixed patrol strategy, and passengers, aft er observing it, decide whether to buy 
a ticket or not so that they minimize their expected total cost. Th e leader’s objective 
is to maximize total revenue (tickets sold and penalties). What is new to the model 
is a great number of possible pure patrol strategies, each being subject to spatial and 
temporal constraints. In order to cope with this diffi  culty, TRUSTS uses the tran-
sition graph capturing spatial and temporal structure of the domain and calculates 
the optimal fl ow through this graph using linear programming. What is more, an 
extension is applied of a history-duplicate transition graph, which forbids too long 
patrols and penalizes patrols having too many switches (Yin et al. 2012).

f) Green security games

Another domain where game theory (more specifi cally Stackelberg games) may be 
applied is that of so-called green security. Th is domain covers, for example, protect-
ing fi sheries form over-fi shing or protecting wildlife from poaching. As Fang (2015) 
points out, there are several key features characteristic to this domain, deviating 
from assumptions of the basic model. Th ere are multiple adversaries whose actions 
(attacks) are repeated and frequent, which exceeds the one-shot model of Stackel-
berg security games. Furthermore, the attackers generally do not invest themselves 
in extensive surveillance and spend less time and eff ort in each attack. It is thus 
important to take account of their bounded rationality and bounded surveillance 
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when modelling the situation. Another key feature is that there are more attack data 
available in green security domains compared to infrastructure domains, which en-
ables us to study the attackers’ decision-making from the data (Fang 2015).

It is stressed that the Stackelberg assumption (i.e. adversaries fully observe the 
defender’s mixed strategy conducting extensive surveillance before each attack) can 
be unrealistic in green security domains, and as there may be a lag in the attacker’s 
observing, it may be valuable to the defender to plan ahead regarding their actions. 
Th ey introduce a novel model called Green Security Games (GSGs) in which it is 
assumed that the attacker’s understanding of the defender’s strategy may not be up-
to-date, and thus it can be approximated as a convex combination of the defender’s 
actions in recent rounds. As such, CSGs provide more generality and allow the de-
fender to plan their strategies (Fang 2015).

In Fang (2015), the author further proposes two algorithms which plan ahead; 
one planning a fi xed number of steps ahead and the other providing a short se-
quence of strategies for repeated execution.

g) Network security games

Moving assets through a hostile transportation network is another type of situation 
which can be modelled using game theory. According to Okamoto et al. (2012) such 
hostile network environments are characterized by six key features:
(1) the topology of the network creates exponentially sized strategy spaces (it is no 

longer possible to fi nd optimal strategies using normal form techniques),
(2) security is not the only criterion which needs to be considered (performance 

objectives need to be taken into consideration),
(3) patterns of behaviour may be detected by the adversary,
(4) adversaries are rational agents (balancing the harm they can infl ict with attack 

costs),
(5) information on the adversaries (their capabilities, payoff s and costs) is rarely 

available,
(6) there may be multiple adversaries with various abilities.

Th e problem is modelled as a game between a sender and an adversary in 
which the sender chooses a fl ow through the network, via which he would move the 
assets, and the adversary chooses one or more attacks that do harm to one or more 
link in the network. Th e sender seeks to minimize the harm while the adversary 
strives to maximize the harm reduced by the attack costs.

Th e authors follow up on previous work in network security games and extend 
it with several new approaches and contributions. Th ey assume non-zero payoff s 
because of attack costs borne by the attacker. Furthermore, they introduce a re-
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fi nement of the Stackelberg equilibrium (the locally optimal inducible Stackelberg 
equilibrium), which is more suitable for network security games. Th e authors also 
consider games of incomplete information (about the adversary’s capabilities, pay-
off s and costs) and formulate them as Bayesian games (Okamoto et al. 2012).

Similarities can be found in Ge et al. (2019). In their paper they found that 
the unequal information between the attack and defence sides of the network is 
not taken into account in the research of network-security defence technology in 
the game model. Th ey argue that by establishing the network model, the strong 
equilibrium strategy algorithm of a Stackelberg Security Game with incomplete 
information is used to generate the optimal defence strategy of the network. Th e 
defender can actively release the incentive strategy without reducing the accuracy 
of defence strategy generation. According to them, the experimental results pro-
vide a method for the selection of the optimal defence strategy and can strengthen 
the security of the system.

h) Security at Large Public Events

Stackelberg games may as well serve as a basis when modelling protection at large 
public events. Such events, mainly in major cities, where masses of people take part, 
represent attractive targets for terrorist attacks. (Yin et al. 2014 cite an example of 
the Boston Marathon bombings in April 2013.) It is thus greatly important to de-
ploy limited security resources in a way to maximize the protection of these events.

A signifi cant feature of large public events is their dynamic nature. Firstly, the 
importance of targets changes over time. In the case of a marathon, the number of 
participants and spectators at any specifi c area changes in the course of the race (as 
the runners advance continuously through it). Secondly, the attacker may attack 
at any moment, and the defender is able to relocate the resources among targets at 
any time. Th is means that the strategy space of both the defender and the attacker 
is continuous and infi nite. And fi nally, as these events take place quite rarely, the 
attacker may not be able to observe the defender’s (mixed) strategy and respond to 
it. Th erefore, Yin et al. (2014) propose algorithms which compute the optimal pure 
(dynamic) strategy for the defender as a robust solution to the problem. Th ey design 
a game model minimizing the worst-case loss of the defender in which both agents 
have continuous and infi nite strategy spaces and the payoff  of an attack varies over 
time.

Th e authors propose an algorithm computing the optimal dynamic allocation 
of the defender’s resources (which can be relocated among targets without any delay 
in time), i.e. dynamic patrolling, called SCOUT-A (Scheduling seCurity resOurces 
in pUblic events with no relocating delAy) and an algorithm SCOUT-C to deal with 
general cases (Yin et al. 2014).
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i) Urban Crime

Zhang et al. (2015) use a game-theoretic model for computing optimal patrol strat-
egies to deter crimes in urban areas. As they state, these crimes are mostly oppor-
tunistic in nature, i.e. the criminals are less strategic in planning attacks (compared 
to, e.g., terrorists) but are more fl exible in executing them. Th e presence of police 
patrols aims to deter such crimes. Just as in the examples (cases) cited so far, the 
criminals may observe potential patterns in patrol distribution and then strike at 
uncovered areas (since police have limited resources, which prevents permanently 
covering all areas). Human (manual) planning of patrol schedules shows not to be 
the most effi  cient approach since it is time-consuming, and humans may tend to-
wards patterns. Automated planners may bring a remedy to this problem.

Th e authors deal with the problem of generating effi  cient patrol strategies 
against opportunistic criminals. Th e main novelty of their approach is that they 
learn the criminal behaviour from real data. Instead of modelling the adversary’s 
(criminal’s) decision-making explicitly, they learn their interaction with the defend-
er (patrol offi  cers) using real world data. (Th e models discussed so far assume a 
perfectly rational attacker or attackers with bounded rationality.) Th is interaction is 
modelled as a Dynamic Bayesian Network (DBN, see, e.g., https://www.bayesserv-
er.com/docs/introduction/dynamic-bayesian-networks). Another contribution of 
Zhang et al. (2015) is a sequence of modifi cations of this DBN model allowing for 
its compact representation, which leads to better learning accuracy and increased 
speed of learning of the expectation maximization algorithm. (Th e maximization 
expectation algorithm serves to learn unknown parameters in the DBN from given 
learning data.) Th e authors further introduce two planning algorithms for comput-
ing the optimal patrol strategy. Th ey also propose to frequently update the adver-
sary model because criminals may adapt to deployed defender strategy.

5. Discussion and concluding remarks

Stackelberg security games are considered to be a natural approximation of re-
al-world security scenarios, and the cases outlined in the text above show that it 
may provide a useful analytic tool for fi nding the optimal strategy in the area of 
public security. Typically, in these scenarios, a security force (e.g. the police) seeks 
to optimally allocate its limited security resources (offi  cers) over multiple targets to 
protect against a rational adversary. As, according to the model, the security force 
(defender) commits to a strategy fi rst and the adversary (attacker) responds to this 
strategy (so to maximize their expected payoff ) aft er having thoroughly observed it, 
an effi  cient security system requires a randomization of the defender’s action. Un-
predictability of the defender’s actions increases adversaries’ uncertainty and thus 
improves the level of security. Algorithms based on the Stackelberg model calculate 
this optimal (randomized) mixed strategy to the defender.
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Th e cases presented in this paper prove that real-world deployed soft ware as-
sistants built upon Stackelberg security games are helpful in situations where (a 
limited number of) police patrols need to be allocated in order to protect multiple 
strategic targets, such as airport terminals, fl ights or coasts. In these situations, these 
soft ware assistants provide an optimal solution how to effi  ciently use these limited 
resources. Th e model is useful as well in cases of green security, urban transport, 
security of large public events etc. Th e cases collected and outlined in this paper 
clearly show that security games can be used by public policy- and decision-makers 
in projecting and realizing measures aimed at dealing with goals of security policies 
(especially with deterrence and prevention, protection and response – Donley and 
Pollard 2002).

On the other hand, an essential prerequisite of the effi  cient functioning of 
these mechanisms is that the initial model approximates the real-world setting as 
accurately as possible. For instance, the assumptions of the very basic model of a 
Stackelberg game are very strong and restrictive (e.g. the attacker is fully rational 
and has perfect knowledge of the defender’s strategy). In every situation studied, 
its specifi c features and characteristics need to be taken into consideration by the 
model. Many variations of the basic Stackelberg security game model and solution 
concepts have been studied to handle diff erent types of adversaries (Sinha et al. 
2018). As Wang et al. (2019), who suggested a revised approach for the area of wild-
life protection, recently summarized, researchers, inspired by successful deploy-
ments of Stackelberg Security Game in real life, were working hard to optimize the 
game models to make them more practical. Researchers have also tried to integrate 
the original models with old and new theories (e.g. Trejo et al. 2015; Kamra et al. 
2018). Some suggested that understanding how individuals perceive risk is vital to 
understanding the behaviour of attackers (Ridinger et al. 2016). Not long ago, for 
instance, it has been pointed out that in the cyber-security domain the interaction 
between the defender and the adversary is quite complicated with a high degree of 
incomplete information and uncertainty (Kar et al. 2017).

On the other hand, with the increasing complexity of models the algorithms 
searching for optimal solution become more complex and sophisticated as well, and 
it is not easy to provide a fast algorithms that can scale to very large and complex 
problems (Pita et al. 2009). So the question is: How can one evaluate the functioning 
of the algorithms employed and the eff ectiveness of various scheduling assistants ? 
Tambe (2011) points out that there are two primary diffi  culties related to attempts 
to evaluate deployed security systems. Firstly, the real adversaries will hardly coop-
erate in evaluation, and, secondly, there is oft en very little data available (e.g. about 
terrorist attacks).

However, there are several means of evaluation, theoretical or empirical ones. 
One possibility is testing such generated schedules against simpler randomization 
approaches (such as uniform randomization); this type of evaluation was used, for 
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example, in Pita et al. (2008), Tsai et al. (2009) and further. Th ey can also be com-
pared with previous scheduling practices as executed in Pita et al. (2008) or An et 
al. (2012). Where possible, real-world data should serve as a basis for evaluation. 
As example, Yin et al. (2012, see above), when designing a randomized system of 
patrols in order to deter passengers from fare evasion, performed simulations based 
on actual ridership data from Los Angeles Metro train lines. Th e results of these 
simulations suggested a possibility of signifi cant fare-evasion deterrence in case 
their TRUSTS assistant had been deployed.

However, when considering an anti-terrorist security system, it is diffi  cult, 
or rather impossible, to measure directly the deterrence eff ect of deployed mech-
anisms (which is a key goal of many security systems). Although we are capable of 
quantifying the number of attacks realized under the use of the mechanism, it is im-
possible to say how many attacks would have occurred without it. One possibility is 
to compare data on arrest records; however, as there are multiple factors infl uencing 
these numbers, such analysis would not tell a lot.

A way to obtain “human data” is through controlled laboratory experiments. 
Th ese enable capturing behavioural features not included in theoretical models; 
however, experimental fi ndings suff er from certain shortcomings, as well. One tra-
ditional criticism to experimental fi ndings relates to the fact that the most frequent 
subjects of laboratory experiments are university students who may not correctly 
represent the real actors involved in tested situation. (E.g., the defender and the 
attacker in real-world security situations are hardly both students.)

Th ere are various means of security-system evaluation, considering the costs 
and benefi ts. According to Tambe (2011), we distinguish between direct benefi ts 
which can be measured and indirect benefi ts. While direct benefi ts are, for example, 
reduced security costs or an increased number of attackers, the indirect benefi ts in-
clude deterred attacks or increased planning time and requirements for a successful 
attack. Th e costs, on the other hand, may be measured quite easily. Th ese comprise, 
for instance, costs of system implementation and its maintenance.

In addition to the quantitative methods mentioned so far, an important source 
of information are qualitative expert evaluations. Domain experts may point to key 
benefi ts of deployed mechanisms and their eff ectiveness in boosting security. Th is 
can be a valuable input into discussions of researchers who have put the original 
model under discussion also.

One may also suggest that the presented models do not consider the transac-
tion costs of switching from one strategy (to defend / attack airport terminal 1) to 
another one (defend / attack terminal 2) and that the transaction costs may be highly 
decisive for setting the appropriate security (public) policy. We have not found any 
literature that would deal with this. On the other hand, the model of a game does 
not assume for players to switch from one strategy to another in the course of a 
game. Th is may be the reason why switching costs are not considered. Once the 
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defender chooses their strategy, they stick with it, and the same applies for the at-
tacker. Th e defender may, of course change their strategy for a following game (that 
is, to switch to another strategy between games), however, potential costs of such 
change are not considered by their utility function in a given game.

For an attacker we do not consider the possibility of switching the strategy, 
either. Th e model assumes that the adversary surveys the defender’s action (over 
a period) and then launches an attack (in game-theoretic terms, they choose their 
pure strategy). So, they does not switch between their strategies.

Th is simplifi cation does not deviate importantly from a real setting where a 
concrete allocation of resources (that is, for example, a decision to protect a concrete 
terminal) is set for a period of time (e.g., a day) and does not change in the course of 
it. Consider a concrete example in which we need to decide which terminal is going 
to be patrolled the next day (supposing, e.g., two terminals but only one disposable 
patrol). Th e “transaction costs” between sending the patrol to the fi rst terminal, or 
the second one, may be negligible. But further research may focus on this defi nitely.
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