Detailed Information on Publication Record
2020
Diffusion coefficients of polar organic compounds in agarose hydrogel and water and their use for estimating uptake in passive samplers
URÍK, Jakub, Albrecht PASCHKE and Branislav VRANABasic information
Original name
Diffusion coefficients of polar organic compounds in agarose hydrogel and water and their use for estimating uptake in passive samplers
Authors
URÍK, Jakub (703 Slovakia, belonging to the institution), Albrecht PASCHKE (276 Germany) and Branislav VRANA (703 Slovakia, guarantor, belonging to the institution)
Edition
Chemosphere, OXFORD, PERGAMON-ELSEVIER SCIENCE LTD, 2020, 0045-6535
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10511 Environmental sciences
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 7.086
RIV identification code
RIV/00216224:14310/20:00116068
Organization unit
Faculty of Science
UT WoS
000527935600080
Keywords in English
Diffusion coefficient; Passive sampling; DGT; Polar organic compounds; Agarose hydrogel; Taylor dispersion
Tags
Tags
International impact, Reviewed
Změněno: 2/11/2020 10:19, Mgr. Marie Šípková, DiS.
Abstract
V originále
Diffusion coefficient (D) is an important parameter for prediction of micropollutant uptake kinetics in passive samplers. Passive samplers are nowadays commonly used for monitoring trace organic pollutants in different environmental matrices. Samplers utilising a hydrogel layer to control compound diffusion are gaining popularity. In this work we investigated diffusion of several perfluoroalkyl substances, currently used pesticides, pharmaceuticals and personal care products in 1.5% agarose hydrogel by measuring diffusion coefficients using two methods: a diffusion cell and a sheet stacking technique. Further, diffusion coefficients in water were measured using Taylor dispersion method. The sheet stacking method was used to measure D at 5, 12, 24, and 33 degrees C in order to investigate temperature effect on diffusion. Median D values ranged from 2.0 to 8.6 x 10(-6) cm(2) s(-1) and from 2.1 to 8.5 x 10(-6) cm(2) s(-1) for the diffusion cell and sheet stack methods respectively. For most compounds, the variability between replicates was higher than the difference between values obtained by the two methods. Rising temperature from 10 to 20 degrees C increases the diffusion rate by the factor of 1.41 +/- 0.10 in average. In water, average D values ranged from 3.03 to 10.0 x 10(-6) cm(2) s(-1) and were comparable to values in hydrogel, but some compounds including perfluoroalkyl substances with a long aliphatic chain could not be evaluated properly due to sorptive interactions with capillary walls in the Taylor dispersion method. Sampling rates estimated using the measured D values were systematically higher than values estimated from laboratory sampler calibration in our previously published study, by the factor of 2.2 +/- 1.0 in average.
Links
EF16_013/0001761, research and development project |
| ||
LM2018121, research and development project |
| ||
7AMB16DE004, research and development project |
|