Detailed Information on Publication Record
2020
Efficient Analysis of VASS Termination Complexity
KUČERA, Antonín, Jérôme LEROUX and Dominik VELANBasic information
Original name
Efficient Analysis of VASS Termination Complexity
Authors
KUČERA, Antonín (203 Czech Republic, guarantor, belonging to the institution), Jérôme LEROUX (250 France) and Dominik VELAN (203 Czech Republic, belonging to the institution)
Edition
New York, USA, LICS '20: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, p. 676-688, 13 pp. 2020
Publisher
ACM
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10200 1.2 Computer and information sciences
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
electronic version available online
RIV identification code
RIV/00216224:14330/20:00114250
Organization unit
Faculty of Informatics
ISBN
978-1-4503-7104-9
UT WoS
000665014900052
Keywords in English
Vector addition systems; Termination
Tags
International impact, Reviewed
Změněno: 29/4/2021 07:59, RNDr. Pavel Šmerk, Ph.D.
V originále
The termination complexity of a given VASS is a function $L$ assigning to every $n$ the length of the longest nonterminating computation initiated in a configuration with all counters bounded by $n$. We show that for every VASS with demonic nondeterminism and every fixed $k$, the problem whether $L \in G_k$, where $G_k$ is the $k$-th level in the Grzegorczyk hierarchy, is decidable in polynomial time. Furthermore, we show that if $L \notin G_k$, then L grows at least as fast as the generator $F_k+1$ of $G_k+1$. Hence, for every terminating VASS, the growth of $L$ can be reasonably characterized by the least $k$ such that $L \in G_k$. Furthermore, we consider VASS with both angelic and demonic nondeterminism, i.e., VASS games where the players aim at lowering/raising the termination time. We prove that for every fixed $k$, the problem whether $L \in G_k$ for a given VASS game is NP-complete. Furthermore, if $L \notin G_k$, then $L$ grows at least as fast as $F_k+1$.
In Czech
Článek se zabývá odhadem maximální doby běhu VASS systémů.
Links
GA18-11193S, research and development project |
| ||
MUNI/A/1050/2019, interní kód MU |
| ||
MUNI/A/1076/2019, interní kód MU |
|