D 2014

What do forbidden light-ray fields look like?

STOCKMAN, Paul, Stephen OXBURGH, Tomáš TYC a Johannes COURTIAL

Základní údaje

Originální název

What do forbidden light-ray fields look like?

Autoři

STOCKMAN, Paul, Stephen OXBURGH, Tomáš TYC (203 Česká republika, garant, domácí) a Johannes COURTIAL

Vydání

BELLINGHAM, NOVEL OPTICAL SYSTEMS DESIGN AND OPTIMIZATION XVII, od s. "SPIE"-"5", 6 s. 2014

Nakladatel

SPIE-INT SOC OPTICAL ENGINEERING

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10306 Optics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Odkazy

URL

Organizační jednotka

Přírodovědecká fakulta

ISBN

978-1-62841-220-8

ISSN

DOI

http://dx.doi.org/10.1117/12.2061409

UT WoS

000354367700002

Klíčová slova anglicky

generalised refraction; micro-optics; light fields that appear forbidden

Štítky

rivok

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 25. 8. 2020 11:19, Mgr. Marie Šípková, DiS.

Anotace

V originále

Ray-optically, optical components change a light-ray field on a surface immediately in front of the component into a different light-ray field on a surface behind the component. In the ray-optics limit of wave optics, the incident and outgoing light-ray directions are given by the gradient of the phase of the incident and outgoing light field, respectively. But as the curl of any gradient is zero, the curl of the light-ray field also has to be zero. The above statement about zero curl is true in the absence of discontinuities in the wave field. But exactly such discontinuities are easily introduced into light, for example by passing it through a glass plate with discontinuous thickness. This is our justification for giving up on the global continuity of the wave front, thereby compromising the quality of the field (which now suffers from diffraction effects due to the discontinuities) but also allowing light-ray fields that appear to be (but are not actually) possessing non-zero curl and thereby significantly extending the possibilities of optical design. Here we discuss how the value of the curl can be seen in a light-ray field. As curl is related to spatial derivatives, the curl of a light-ray field can be determined from the way in which light-ray direction changes when the observer moves. We demonstrate experimental results obtained with light-ray fields with zero and apparently non-zero curl.
Zobrazeno: 14. 11. 2024 05:42