J 2020

A Cross-domain Comparative Study of Big Data Architectures

MACÁK, Martin, Mouzhi GE and Barbora BÜHNOVÁ

Basic information

Original name

A Cross-domain Comparative Study of Big Data Architectures

Authors

MACÁK, Martin (703 Slovakia, belonging to the institution), Mouzhi GE (156 China, guarantor, belonging to the institution) and Barbora BÜHNOVÁ (203 Czech Republic, belonging to the institution)

Edition

International Journal of Cooperative Information Systems, 2020, 0218-8430

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 1.286

RIV identification code

RIV/00216224:14610/20:00116297

Organization unit

Institute of Computer Science

UT WoS

000603594000001

Keywords (in Czech)

Big Data;Big Data architecture;cross-domain comparison;domain-specific architectures; architectural variety

Keywords in English

Big Data;Big Data architecture;cross-domain comparison;domain-specific architectures; architectural variety

Tags

Tags

International impact, Reviewed
Změněno: 26/4/2021 18:33, RNDr. Martin Macák, Ph.D.

Abstract

V originále

Nowadays, a variety of Big Data architectures are emerging to organize the Big Data life cycle. While some of these architectures are proposed for general usage, many of them are proposed in a specific application domain such as smart cities, transportation, healthcare, and agriculture. There is, however, a lack of understanding of how and why Big Data architectures vary in different domains and how the Big Data architecture strategy in one domain may possibly advance other domains. Therefore, this paper surveys and compares the Big Data architectures in different application domains. It also chooses a representative architecture of each researched application domain to indicate which Big Data architecture from a given domain the researchers and practitioners may possibly start from. Next, a pairwise cross-domain comparison among the Big Data architectures is presented to outline the similarities and differences between the domain-specific architectures. Finally, the paper provides a set of practical guidelines for Big Data researchers and practitioners to build and improve Big Data architectures based on the knowledge gathered in this study.

Links

EF16_013/0001802, research and development project
Name: CERIT Scientific Cloud
MUNI/A/1411/2019, interní kód MU
Name: Aplikovaný výzkum: softwarové architektury kritických infrastruktur, bezpečnost počítačových systémů, zpracování přirozeného jazyka a jazykové inženýrství, vizualizaci velkých dat a rozšířená realita.
Investor: Masaryk University, Category A