Detailed Information on Publication Record
2020
Bioreactor Processed Stromal Cell Seeding and Cultivation on Decellularized Pericardium Patches for Cardiovascular Use
MATEJKA, Roman, Miroslav KONARIK, Jana STEPANOVSKA, Jan LIPENSKY, Jaroslav CHLUPAC et. al.Basic information
Original name
Bioreactor Processed Stromal Cell Seeding and Cultivation on Decellularized Pericardium Patches for Cardiovascular Use
Authors
MATEJKA, Roman (203 Czech Republic, guarantor), Miroslav KONARIK (203 Czech Republic), Jana STEPANOVSKA (203 Czech Republic), Jan LIPENSKY (203 Czech Republic), Jaroslav CHLUPAC (203 Czech Republic), Daniel TUREK (203 Czech Republic), Simon PRAZAK (203 Czech Republic), Antonin BROZ (203 Czech Republic), Zuzana SIMUNKOVA (203 Czech Republic), Iveta MRAZOVA (203 Czech Republic), Serhij FOROSTYAK (203 Czech Republic, belonging to the institution), Peter KNEPPO (203 Czech Republic), Jozef ROSINA (203 Czech Republic), Lucie BACAKOVA (203 Czech Republic) and Jan PIRK (203 Czech Republic)
Edition
Applied Sciences-Basel, BASEL, MDPI AG, 2020, 2076-3417
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
30201 Cardiac and Cardiovascular systems
Country of publisher
Switzerland
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 2.679
RIV identification code
RIV/00216224:14110/20:00116429
Organization unit
Faculty of Medicine
UT WoS
000564790600001
Keywords in English
bioreactor; cardiovascular patch; decellularization; recellularization; pericardium
Tags
International impact, Reviewed
Změněno: 16/9/2020 09:37, Mgr. Tereza Miškechová
Abstract
V originále
Featured Application In this study, we have prepared decellularized pericardium repopulated with adipose tissue-derived stromal cells for potential use as implantable cardiovascular patches. Novel optimized dynamic decellularization and recellularization systems have been used and demonstrated. In this bioreactor, the stromal cells deeply repopulated the full thickness of the matrix, and they pre-differentiated towards the smooth muscle cell phenotype by applying cyclic pressure stimulation. Thus, these dynamically recellularized patches resemble vascular tunica media. These grafts may be further applied in animal experiments to assess surface endothelialization and in vivo remodelling. Animal tissue is of large potential availability and decellularization renders the matrix non-immunogenic. Autologous adipose cells for recellularization can be harvested through small biopsy in human patients with cardiovascular disease. A potential application of this approach is manufacturing a tissue-engineered cardiovascular patch with improved biocompatibility for the surgical repair of the human heart or vessels, such as the carotid artery or femoral artery. (1)Background: Decellularized xenogeneic tissues are promising matrices for developing tissue-engineered cardiovascular grafts. In vitro recellularization of these tissues with stromal cells can provide a better in vivo remodelling and a lower thrombogenicity of the graft. The process of recellularization can be accelerated using a cultivation bioreactor simulating physiological conditions and stimuli. (2)Methods: Porcine pericardium was decellularized using a custom-built decellularization system with an optimized protocol. Autologous porcine adipose-derived stromal cells (PrASCs), isolated from the subcutaneous fat tissue, were used for recellularizing the decellularized pericardium. A custom cultivation bioreactor allowing the fixing of the decellularized tissue into a special cultivation chamber was created. The bioreactor maintained micro-perfusion and pulsatile pressure stimulation in order to promote the ingrowth of PrASCs inside the tissue and their differentiation. (3)Results: The dynamic cultivation promoted the ingrowth of cells into the decellularized tissue. Under static conditions, the cells penetrated only to the depth of 50 mu m, whereas under dynamic conditions, the tissue was colonized up to 250 mu m. The dynamic cultivation also supported the cell differentiation towards smooth muscle cells (SMCs). In order to ensure homogeneous cell colonization of the decellularized matrices, the bioreactor was designed to allow seeding of the cells from both sides of the tissue prior to the stimulation. In this case, the decellularized tissue was recolonized with cells within 5 days of dynamic cultivation. (4)Conclusions: Our newly designed dynamic bioreactor markedly accelerated the colonization of decellularized pericardium with ASCs and cell differentiation towards the SMC phenotype.