J 2021

ChemVA: Interactive Visual Analysis of Chemical Compound Similarity in Virtual Screening

SABANDO, María Virginia, Pavol ULBRICH, Matías SELZER, Jan BYŠKA, Jan MIČAN et. al.

Basic information

Original name

ChemVA: Interactive Visual Analysis of Chemical Compound Similarity in Virtual Screening

Authors

SABANDO, María Virginia (32 Argentina), Pavol ULBRICH (703 Slovakia, belonging to the institution), Matías SELZER (32 Argentina), Jan BYŠKA (203 Czech Republic, belonging to the institution), Jan MIČAN (203 Czech Republic, belonging to the institution), Ignacio PONZONI (32 Argentina), Axel J. SOTO (32 Argentina), María Luján GANUZA (32 Argentina) and Barbora KOZLÍKOVÁ (203 Czech Republic, guarantor, belonging to the institution)

Edition

IEEE Transactions on Visualization and Computer Graphics, IEEE, 2021, 1077-2626

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 5.226

RIV identification code

RIV/00216224:14330/21:00118764

Organization unit

Faculty of Informatics

UT WoS

000706330100074

Keywords in English

Virtual screening;visual analysis;dimensionality reduction;coordinated views;cheminformatics

Tags

Tags

International impact, Reviewed
Změněno: 24/7/2023 09:26, doc. RNDr. Barbora Kozlíková, Ph.D.

Abstract

V originále

In the modern drug discovery process, medicinal chemists deal with the complexity of analysis of large ensembles of candidate molecules. Computational tools, such as dimensionality reduction (DR) and classification, are commonly used to efficiently process the multidimensional space of features. These underlying calculations often hinder interpretability of results and prevent experts from assessing the impact of individual molecular features on the resulting representations. To provide a solution for scrutinizing such complex data, we introduce ChemVA, an interactive application for the visual exploration of large molecular ensembles and their features. Our tool consists of multiple coordinated views: Hexagonal view, Detail view, 3D view, Table view, and a newly proposed Difference view designed for the comparison of DR projections. These views display DR projections combined with biological activity,selected molecular features, and confidence scores for each of these projections. This conjunction of views allows the user to drill down through the dataset and to efficiently select candidate compounds. Our approach was evaluated on two case studies of finding structurally similar ligands with similar binding affinity to a target protein, as well as on an external qualitative evaluation. The results suggest that our system allows effective visual inspection and comparison of different high-dimensional molecular representations.Furthermore, ChemVA assists in the identification of candidate compounds while providing information on the certainty behind different molecular representations.

Links

GC18-18647J, research and development project
Name: Vizuální analýza interakcí proteinů a ligandů (Acronym: PROLINT)
Investor: Czech Science Foundation
MUNI/A/1076/2019, interní kód MU
Name: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity 20 (Acronym: SKOMU)
Investor: Masaryk University, Category A
MUNI/A/1411/2019, interní kód MU
Name: Aplikovaný výzkum: softwarové architektury kritických infrastruktur, bezpečnost počítačových systémů, zpracování přirozeného jazyka a jazykové inženýrství, vizualizaci velkých dat a rozšířená realita.
Investor: Masaryk University, Category A
MUNI/A/1549/2020, interní kód MU
Name: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity 21 (Acronym: SKOMU)
Investor: Masaryk University