Detailed Information on Publication Record
2020
Matrices of optimal tree-depth and a row-invariant parameterized algorithm for integer programming
CHAN, Timothy Fong Nam, Jacob COOPER, Martin KOUTECKÝ, Daniel KRÁĽ, Kristýna PEKÁRKOVÁ et. al.Basic information
Original name
Matrices of optimal tree-depth and a row-invariant parameterized algorithm for integer programming
Authors
CHAN, Timothy Fong Nam (826 United Kingdom of Great Britain and Northern Ireland), Jacob COOPER (826 United Kingdom of Great Britain and Northern Ireland, belonging to the institution), Martin KOUTECKÝ (203 Czech Republic), Daniel KRÁĽ (203 Czech Republic, guarantor, belonging to the institution) and Kristýna PEKÁRKOVÁ (203 Czech Republic, belonging to the institution)
Edition
Dagstuhl, Germany, Proceedings of the 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020), p. "26:1"-"26:19", 19 pp. 2020. p. "26:1"-"26:19", 19 pp. 2020
Publisher
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
Germany
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
electronic version available online
RIV identification code
RIV/00216224:14330/20:00116613
Organization unit
Faculty of Informatics
ISBN
978-3-95977-138-2
ISSN
Keywords in English
matroid algorithms; width parameters; integer programming; fixed parameter tractability; branch-width; branch-depth
Tags
International impact, Reviewed
Změněno: 26/4/2021 07:20, RNDr. Pavel Šmerk, Ph.D.
Abstract
V originále
A long line of research on fixed parameter tractability of integer programming culminated with showing that integer programs with n variables and a constraint matrix with dual tree-depth d and largest entry D are solvable in time g(d,D)poly(n) for some function g. However, the dual tree-depth of a constraint matrix is not preserved by row operations, i.e., a given integer program can be equivalent to another with a smaller dual tree-depth, and thus does not reflect its geometric structure. We prove that the minimum dual tree-depth of a row-equivalent matrix is equal to the branch-depth of the matroid defined by the columns of the matrix. We design a fixed parameter algorithm for computing branch-depth of matroids represented over a finite field and a fixed parameter algorithm for computing a row-equivalent matrix with minimum dual tree-depth. Finally, we use these results to obtain an algorithm for integer programming running in time g(d*,D)poly(n) where d* is the branch-depth of the constraint matrix; the branch-depth cannot be replaced by the more permissive notion of branch-width.
Links
MUNI/A/1050/2019, interní kód MU |
| ||
MUNI/A/1076/2019, interní kód MU |
| ||
MUNI/I/1677/2018, interní kód MU |
|