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A B S T R A C T

We model future EUR/USD exchange rate realized volatility (RV) within a class of heterogeneous
autoregressive (HAR) models augmented by implied volatilities (IVs). The existing literature has
almost unanimously employed IVs from options with one-month maturities; however, our in-
sample analysis shows that using IVs from options with a shorter maturity (of one day and one
week) might be more relevant when explaining the volatility of the next day and week. In general,
IVs are more useful in predicting future RV than past RVs (daily, weekly and monthly averages). At
the same time, RVs seem to contain only small incremental predictive power compared to IVs. The
out-of-sample results strengthen our in-sample results, as they show the increased predictive
power of the models with implied volatility up to 17.3% for one-day-ahead, 42.1% for one-week-
ahead, and 22.8% for one-month-ahead forecasts. Additionally, the superior set of models contains
only volatility model specifications with IVs. Our results hold not only for individual forecast
models but also for combinations of volatility forecasts. We show that increased forecasting ac-
curacy is stable across time and that it is achieved during periods of high market volatility. Our
study also provides new evidence that implied volatility from short-lived options as a serious
contender for modeling realized volatility.
1. Introduction

For all assets where future returns are uncertain, return volatility plays a central role. Understanding and forecasting volatility helps
us i) to understand how prices behave, ii) to allocate assets more efficiently, iii) to better manage financial risks, and iv) to value
financial derivatives. It is therefore not surprising that since the time variation in volatility has been broadly accepted as a fact, esti-
mation, modeling, and forecasting volatility have received considerable attention in the literature (e.g. Andersen & Bollerslev, 1998;
Bollerslev, 1986; Corsi, 2009; Engle, 1982).

Volatility estimation concentrates around historical realized volatility and forward-looking implied volatility. Several studies have
investigated the predictive power of realized and implied volatility with respect to future price variation, but the results are mixed,
particularly about the predictive power of implied volatility. First, Canina and Figlewski (1993), Becker et al. (2006, 2007), and Becker
and Clements (2008) concluded that in stock markets, implied volatility contains very little incremental information beyond historical
realized volatility. Second, Day and Lewis (1992), Christensen and Prabhala (1998), Blair et al. (2001), Busch et al. (2011), Han and
Park (2013), Kambouroudis et al. (2016), Wang and Wang (2016), and Kourtis et al. (2016) concluded that implied volatility contains
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additional information on future levels of stock market volatility beyond what is captured by historical volatility. Specifically, Kourtis
et al. (2016) found that implied volatility from options that mature in the next 30 days tends to be useful in predicting month-ahead
realized volatility on multiple stock markets around the world but is less helpful with a shorter forecast horizon. Seo and Kim
(2015) also found that the forecasting power of volatility models based on implied volatility varies with the investor sentiment. Third,
Christensen and Prabhala (1998) and Blair et al. (2001) argued that implied volatility is not only useful for forecasting purposes but that
all important information is already included in implied volatility, and in fact, realized volatility does not contain any useful information
for forecasting volatility. These are three different views on the role of implied volatility. The literature is scarce for other asset classes.
For example, the bond market was studied in Amin and Morton (1994) and Busch et al. (2011). Amin and Morton (1994) found that
implied volatility has some merits when pricing and trading bond derivatives. Based on the earlier works on model-free implied
volatility (e.g., Bakshi et al. (2003); Jiang and Tian (2005)), Chatrath et al. (2015) showed that compared to historical realized volatility,
model-free implied volatility (from options with 30 days and longer maturity) and risk-neutral moments have superior forecasting
performance with respect to future realized volatility.

The foreign exchange market has also been of interest in this strand of the literature. Concerning volatility modeling, Jorion (1995)
and Xinzhong and Taylor (1995) found that implied volatility is superior to realized volatility. However, within a class of autoregressive
fractionally integrated moving average models, Pong et al. (2004) claimed the exact opposite and argued that for up to 10-day forecasts,
using historical volatility led to more accurate forecasts because of the existence of high-frequency (high-precision) volatility estimators,
which are not available for implied volatility. For longer forecast horizons, implied volatility was still not better than historical volatility.
Covrig and Low (2003) and Busch et al. (2011) also found that implied volatility contains incremental information about the realized
volatility on the foreign exchange market. However, Covrig and Low (2003) used only a larger forecast horizon starting from 1 to 6
months and found that for one-month-ahead forecasts, implied volatility shows very accurate forecasts (superior to realized volatility),
but an increasing forecast horizon leads to negligible differences between the use of the two volatility measures.

The standard in the existing volatility modeling literature is to rely on implied volatilities derived from options that mature in more
than 30 days (e.g. Becker & Clements, 2008; Becker et al., 2007, 2006; Blair et al., 2001; Busch et al., 2011; Christensen & Prabhala,
1998; Han & Park, 2013; Kambouroudis et al., 2016; Wang & Wang, 2016). The role of implied volatility from options with a shorter
maturity has not been investigated. This is surprising, as the very existence of a market for options with short-termmaturity (less than 30
days) means that there is a demand for insurance against undesirable price movements in the near future. On the foreign exchange
market, such price movements might impend from scheduled macroeconomic news announcements, which is a heavily investigated
topic in the literature (e.g. Andersen& Bollerslev, 1998; Andersen, Bollerslev, Diebold, et al., 2007, 2003; Fatum et al., 2012; Faust et al.,
2007; Gau & Wu, 2017; Kocenda & Moravcova, 2016). Overall, the existing evidence suggests that implied volatility increases several
days before the scheduled news announcement and decreases after the news release and thus carries a volatility risk premium.
Short-lived maturity options therefore provide an exceptional opportunity to capture anticipated price shifts in the near future that
would otherwise be blurred by the noise from options with a longer maturity. It is thus surprising that the existing literature on volatility
modeling is missing the implied volatility from short-lived options.

Our study fills this gap in the literature as it is the first that aims to assess the role of short-lived options in predicting EUR/USD
currency market realized volatility within a common framework of the popular heterogeneous autoregressive volatility models of Corsi
(2009).

We contribute to the literature in three ways. First, in the current literature, most authors employ implied volatilities from option
prices with maturity usually set to one month. This approach is very convenient as volatility indices are readily available (e.g., the
widely used VIX index of the CBOE). Some empirical studies that have in some way used implied volatility with a shorter maturity are
Day and Lewis (1992), Canina and Figlewski (1993), Jorion (1995), and Xinzhong and Taylor (1995). However, these studies are
currently outdated and do not use high-frequency data. Moreover, there seems to be a mismatch in the literature between the volatility
forecast horizon and the days to maturity used to calculate implied volatility. In our study, we focus on the foreign exchange market and
on the very liquid EUR/USD exchange rate. Therefore, our first contribution is that instead of using implied volatilities with only
one-month maturity, we explore implied volatilities from options with three maturities, namely, one-day, one-week and one-month
maturities, to model and forecast the day-, week- and month-ahead volatility on the EUR/USD currency market. Compared to exist-
ing studies that employ only a one-month long maturity, our approach is more general with respect to the potential predictive power of
implied volatilities.

Second, the existing literature seems to suggest that the role of implied and historical volatility differs concerning the forecast
horizon. However, the recent evidence is based mostly on at least one-month-ahead forecasts. Earlier research (e.g. Xinzhong & Taylor,
1995) studied shorter forecast horizons but did not rely on high-frequency data. We fill this gap in the literature, as our setup allows us to
study how the predictive power of the implied volatility of different maturities differs with respect to forecast horizons.

Third, we employ several volatility model specifications and combination forecasts to address the possibility that the findings from
previous studies might have been subject to volatility model choice uncertainty. More specifically, we explore whether our results are
driven by one specific volatility model. We compare individual forecasting models that i) separate volatility into positive and negative
semi-volatilities, ii) separate the continuous volatility component and the jump component, and iii) weight volatility based on the
estimated variance of the measurement error. Next, as it is well known that combination forecasts in the volatility literature tend to
improve forecasts from individual models, we also address the potential issue that through model combination, all potential benefits of
using implied volatility diminish. Within the combination forecasts, we compare the combined forecasting accuracy of the models that
ignore information from implied volatility with the models that include information from implied volatility.

By using an augmented heterogeneous autoregressive model (HAR), we provide new empirical evidence that implied volatilities
(IVs) from options with a one-day and one-week maturity might be more relevant when explaining the volatility of the next one day and
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one week on the EUR/USD foreign exchange market. Overall, the in-sample and out-of-sample results show that IVs are more useful in
predicting future realized volatility (RV) than historical RVs (daily, weekly and monthly averages). Adding RVs to the model that
contains IVs led only to small increases in predictive power. At the same time, although we are using different popular specifications of
the baseline HAR model with only realized volatilities, significant improvements in predicting and forecasting volatility occur when IVs
are also added. We also observe that forecast accuracy improved differently with respect to the forecast horizon. For the in-sample
analysis, employing implied volatility leads to larger improvements for shorter forecast horizons and decreases with a twenty-two-
day-ahead forecasting horizon. However, the out-of-sample analysis shows the largest improvements for one-week-ahead forecasts.
We also decompose forecast improvement to find that most of the improved forecasting performance comes during periods of high
market volatility. An analysis of the time-varying cumulative forecast improvements shows that models with IVs tend to constantly
outperform the standard HAR model across the time period of our sample. Interestingly, large forecast improvements provided by
implied volatility are dated to the second half of 2016 around the Brexit referendum (a weakening of the EUR) and U.S. presidential
elections in November (a strengthening of the USD). Finally, we also perform a sensitivity check to determine whether our results hold
for simplified HAR model specifications and within a different class of volatility model, specifically, an autoregressive fractionally
integrated model with exogenous variables (implied volatilities), where we allow errors to follow the standard GARCH model of Bol-
lerslev (1986). We denote this to be the ARFIX-GARCH model. The model is estimated in a day-ahead setting, and we find that the
inclusion of implied volatilities improves forecasting accuracy.

The rest of this paper is organized as follows. Section 2 describes the data used. Section 3 discusses our methodology. In Section 4, we
first present the results from the in-sample analysis that show the relative importance of IVs being calculated from options with shorter
maturities followed by an out-of-sample study where we compare the overall forecasting accuracy of the models that rely on implied
volatilities. In this section, we also perform an ARFIX-GARCH analysis. Section 5 concludes.

2. Data

In our analysis, we focus on one of the most liquid markets in the world, the EUR/USD exchange rate market. We study twelve years
from 2006 to 01-01 to 2017-12-31. Our dataset consists of two parts. The first part contains the high-frequency data required for the
calculation of realized volatility, and the second part comprises data related to implied volatility. The choice of the EUR/USD exchange
rate is motivated by the notion that if short-lived options contain useful information in predicting future realized volatility, we should
find that the effect on a market with high liquidity, where possible lack of trading activity, larger spreads, and market micro-structure
noise might influence our results to a lesser extent. The price data correspond to over-the-counter (OTC) quoted spot prices1 collected
from the DukasCopy.2 The following sections describe the data in more detail.

2.1. Realized volatility

2.1.1. Trading period
The realized volatility estimation is based on observed historical price movements, while implied volatility is derived from the

market prices of financial derivatives. Before high-frequency data were available, daily realized volatility was estimated through daily
squared returns, and currently, with the increasing availability of high-frequency data, volatility is estimated by using intra-day returns.

In our analysis, we use the realized volatility of the EUR/USD calculated from high-frequency data. The EUR/USD trade volume
changes dramatically with the time of day and day of the week. According to Aloud et al. (2013), this intra-day and intra-week sea-
sonality depends on the opening hours of the relevant markets. Concerning the foreign exchange market where trading is possible over
the entire week, we remove weekends, but in contrast to previous studies, we calculate the realized volatility over the whole day, starting
at 16:00 GMT and ending at the 16:00 GMT the next trading day, which allows us to capture all relevant price movements, not just the
price movements during a chosen ‘trading window’ that is usually selected based on the most liquid and active trading times. Our
motivation is related to the topic of our research in two ways. First, in our dataset, implied volatilities are reported as of 16:00 GMT.
Second, implied volatilities should entail expectations over the price variation in the next periods regardless of an arbitrary ‘trading
window’. For example, if the calculation of realized volatility excludes an arbitrary period in a given day, one could argue that the
different information content of implied volatility is due to the exclusion of this specific period. With this difference in mind, weekends
are still excluded for the days when no implied volatilities are reported.

2.1.2. Data cleaning and estimation procedures
To estimate the realized volatility, we undergo four steps. First, we use the tick-level data of the quoted bid-ask prices and apply an

appropriate cleaning procedure to eliminate possible errors in the dataset. Second, we create an evenly spaced 5-min series of prices,
where the price representing each 5-min window is the most recent mid-price from a given 5-minwindow (i.e., closing prices). Third, we
calculate the intra-day continuous returns and subsequently realized volatility (RV). A more detailed description follows.

As our quoted prices are the tick-level data, we follow the standard in the literature, and in the first step, we apply an appropriate
1 We choose the analysis of spot prices as they drive prices on derivative markets as well. Our choice for spot prices is also motivated by the
literature (Andersen, Bollerslev, & Diebold, 2007; Busch et al., 2011). Alternatively, our analysis could be based on future prices, which is left for
future research.
2 The data are publicly available at https://www.dukascopy.com/swiss/english/marketwatch/historical/.
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cleaning procedure to eliminate possible data errors. To filter the high-frequency data, we use the cleaning procedure suggested by
Barndorff-Nielsen et al. (2009). This procedure consists of applying the following rules.

1. Delete entries with zero quotes.
2. Delete entries with a negative spread.
3. Replace multiple quotes that have the same time stamp and a single entry with the median price.
4. Delete entries for which the spread is more than 50 times the median spread on that day.
5. Delete entries for which the mid-quote deviates by more than ten mean absolute deviations from a centered mean (excluding the

observation under consideration) of 25 observations before and 25 observations after.

In the second step, we choose a 5-min calendar sampling frequency and calculate the mid-price from the latest bid-ask prices in the
given 5-min sampling window. The 5-min sampling frequency should be sufficiently high to produce a volatility estimate with negligible
sampling variation but sufficiently low to mitigate micro-structure noise. Moreover, the 5-min sampling frequency is usually recom-
mended as a rule of thumb for very liquid equity and foreign exchange markets. Liu et al. (2015) considered over 400 different esti-
mators of realized volatility and used 11 years of data on different asset classes. The authors concluded that significantly outperforming
the 5-min RV sampling frequency is difficult in terms of estimation accuracy.

After applying the data cleaning procedure and sampling, we calculate the daily realized volatility (RV) in the third step. More
specifically,

RVt ¼
Xn

i¼1

r2t;i (1)

rt;i ¼ lnct;i � lnct;i�1 (2)

where rt;i represents the intra-day return at day t in the ith sampling window. The returns for each sampling window are calculated as the
log-return from close (ct;i) to close (ct;i�1) mid-prices.

2.2. Implied volatility

Derivatives are priced on the market based on the supply and demand of the market participants, who given an asset pricing model,
enter contracts based on their beliefs about future volatility. Therefore, by observing option prices and assuming a particular asset
pricing model, we can calculate their expected volatility, namely, the implied volatility. Implied volatility therefore represents the
market expectations about future volatility over the remaining life of the given option. If the markets are efficient, implied volatility
should contain all available information and expectations about future price movements. Consequently, implied volatility should be an
efficient forecast of future levels of price variation. However, in practice, implied volatility may provide biased expectations, as un-
derlying option pricing models (and assumptions) might differ or volatility risk might be priced or because at the daily data frequency,
implied volatilities are only a snapshot at a particular time of the day. Accordingly, implied volatilities derived from options with shorter
maturities might be noisier and are rarely used in the empirical literature.3

The trading of options on the OTC foreign exchange market is realized by quoting implied volatility directly. If the parties agree on
the implied volatility, the remaining contract terms are specified. In practice, every volatility quote set by an options trader is converted
into monetary units by using an option-pricing model, which is usually the Garman-Kohlhagen model (Garman & Kohlhagen, 1983).
This is possible as volatility is the only unobserved variable, and the remaining variables are given by option characteristics (e.g.,
maturity), are publicly known (e.g., interest rates) or are to be agreed on in the contract (size of the position). We use the data on implied
volatility from Bloomberg, which aggregates data on a daily basis from the brokers and dealers of large banks and insurance companies.4

This contribution of the Bloomberg database reduces the idiosyncratic effect that is specific to individual market participants who
provide quotes. We refer to this approach of estimating implied volatility as the hard data approach.

The EUR/USD currency pair represents approximately 23% of the total foreign exchange market turnover.5 The EUR/USD market is
the most liquid market in the world, which also minimizes the possible data issues with the quality of quotes. We use implied volatility
quotes from Bloomberg for various maturities. All of our quotes are from at-the-money options with the same delta. The reason for using
at-the-money options to calculate implied volatility (IV) is based on theoretical foundations (e.g. Hull & White, 1987; Jorion, 1995).
At-the-money options should produce the smallest bias in the case of non-constant volatility. They are also considered to be the least
affected by the non-normal distribution of returns and non-simultaneity problems. The earlier studies of Beckers (1981) and Canina and
Figlewski (1993) suggest that the IVs from near the money options tend to predict volatility better than the IVs from deep out/in money
options.

Compared to the existing studies, this research differs in that our volatility models explore the role of IVs for options with a one day,
one week, and one month time to maturity. We selected these maturities to match the forecast horizon used in the volatility model of
3 For a discussion concerning equity options, see Baruník and Hlínkov�a (2016).
4 The number of institutions varies but is usually around 80, e.g., GFI Group, HSBC, Raiffeisen, Societe Generale, InvestAZ, etc.
5 Bank of International Settlements report, available at www.bis.org/publ/rpfx16fx.pdf.
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Corsi (2009). Even when modeling one- or five-day-ahead volatility, the existing studies rely on volatility indices or on other implied
volatilities that are derived from options with a maturity of around one month or 30 days. We argue that if the day-ahead volatility
forecast is of interest, one- or five-day maturity option volatilities should contain expectations that are more relevant for the upcoming
days.

3. Methodology

In this section, we present our methodology. First, we describe the volatility models that are based on the HAR model by Corsi
(2009). The HAR model is widely used for volatility modeling and forecasting as it well describes high volatility persistence and a long
memory of volatility while providing very good forecasting performance. As discussed in Corsi (2009), the standard GARCH model of
Bollerslev (1986) and stochastic volatility models have difficulties in explaining these volatility features. The autoregressive fractionally
integrated realized volatility (ARFI-RV) model is designed to capture the long-memory property, but fractional integration lacks eco-
nomic interpretation. The estimation of these models is also much more complicated. In contrast, compared to the simple autoregressive
(AR) model, the HARmodel can be understood as an extension of an AR(p) process with less parameters, which might prove to be useful
for forecasting purposes. Recently, Kourtis et al. (2016) and Horpestad et al. (2019) compared the performance of the GARCH and HAR
class models to find that the HAR model performed much better. Furthermore, HAR models are easily estimated, and model specifi-
cations can be straightforwardly modified to account for various volatility features. HAR models are therefore well suited for our
purpose of exploring how implied volatilities, which are calculated for various expiration periods, influence future volatility. Our
specific models are described in more detail in the following subsection. Second, we specify the design of the out-of-sample study. Third,
we describe the unconditional forecast combinations. Finally, we outline the evaluation of volatility forecasts.

3.1. Volatility models

We consider several alternative HAR model specifications. The idea is to rule out that in- and out-of-sample forecast improvements
are random artifacts of the baseline HAR model. In all of these specifications, we report the results when only the lagged realized
volatilities are decomposed. In this way, we follow the work of Sevi (2014) and Patton and Sheppard (2015).6

3.1.1. HAR and IV-HAR
The first reference model (benchmark) is the original HAR model developed by Corsi (2009). The future levels of volatility are

predicted through three historical volatility components that should capture short- and long-term volatility behavior or the behavior of
heterogeneous market agents that have different investment horizons (e.g. Muller et al., 1997). This model is denoted simply as HAR:

RVH
tþ1 ¼ β1 þ β2RV

D
t þ β3RV

W
t þ β4RV

M
t þ εt (3)

where RVH
tþ1 is the average daily realized volatility over the next H days, i.e., the forecast horizon. In this study, we consider H ¼ 1, 5,

and 22, i.e., forecasts of intra-day volatility over the next one, five and twenty-two trading days, respectively. RVD
t , RV

W
t , and RVM

t are
the averages of realized volatility over the previous one, five and twenty-two trading days, respectively. These volatility components
should mimic daily (D), weekly (W), and monthly (M) volatility trends. The idea is that an investor with monthly investment horizons
and longer should not be influenced by short-term price movements as much as a day-trader, who might be influenced by not only short-
but also long-term price variations.

Our first alternative specification mimics the reference HAR model in that instead of realized volatilities, the right-hand side var-
iables are implied volatilities derived from options with corresponding one- (IVD

t ), five- (IV
W
t ), and twenty-two- (IVM

t ) day maturities.
We refer to this model as full implied volatility HAR (FIV-HAR):

RVH
tþ1 ¼ β1 þ β2IV

D
t þ β3IV

W
t þ β4IV

M
t þ εt (4)

Here and in the remaining implied volatility models, we use implied volatilities with the same three maturities, regardless of the
forecasting horizon H. We expected that for day-ahead volatility forecasts, short-term implied volatilities should be most informative.
Therefore, an alternative is to use specifications with only one implied volatility component that matches the forecasting horizon H.7

However, the current specification with all three implied volatility components allows us to compare the relative merits of each implied
volatility component.

Our second alternative specification allows us to inspect the incremental information content of the implied volatility, as the plain
HAR model is augmented by implied volatility variables and is referred to as the IV-HAR model:

RVH
tþ1 ¼ β1 þ β2RV

D
t þ β3RV

W
t þ β4RV

M
t þ
6 We also consider a case where weekly and monthly realized volatilities were decomposed for weekly and monthly volatility forecasting models.
These results led to qualitatively similar results as the findings reported in the main text of this paper.
7 The in- and out-of-sample results from these specifications are available upon request. These results support our conclusions drawn from our

specifications, while implied volatility models with only one implied volatility component tend to lead to similar or less accurate out-of-sample
predictions.
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β5IV
D
t þ β6IV

W
t þ β7IV

M
t þ εt (5)

Thus, we can directly observe whether implied volatilities with different maturities up to one month offer relevant predictive in-
formation beyond what is incorporated in the corresponding realized volatility. To rule out that the possible fit and forecast im-
provements are just artifacts of the baseline HAR model, we also augment several popular HAR model specifications.8 In the following
subsection, we describe these models in more detail.

3.1.2. CJ-HAR and IV-CJ-HAR
In the presence of discontinuous price changes, the realized volatility is a non-consistent estimator of price variation. Moreover, price

discontinuities (jumps) might distort the autoregressive structure of the underlying continuous volatility component. Andersen, Bol-
lerslev, and Diebold (2007) argues that jump and continuous volatility components behave differently andmight have a different impact
on the future levels of volatility. Regardless of the underlying asset, the existing empirical studies seem to confirm these observations
(e.g. Ly�ocsa et al., 2017; Ly�ocsa &Moln�ar, 2016; Sevi, 2014). We follow the work of Andersen et al. (2012) and decompose the realized
volatility on the continuous (CC) and jump (JC) components through the estimation of the median realized volatility (MRVt):

JCt ¼maxf0; ðRVt �MRVtÞI½JTt >φ1�α�g (6)

CCt ¼MRVtI½JTt >φ1�α� þ RVI½JTt �φ1�α� (7)

whereMRVt is the median realized volatility, namely, the jump-robust estimator of integrated volatility, and I½:� is an indicator function
that returns 1 if the test statistic JTt (related to the jump component) exceeds the 5% critical value φ1�α (see Eq. (6) in Andersen et al.
(2012) for further details). The MRQt represents the median realized quarticity. More specifically,

MRVt;f ¼ π

6� 4
ffiffiffi
3

p þ π

�
f

f � 2

�Xf�1

j¼2

�
med

��rt;j�1

��; ��rt;j��; ��rt;jþ1

���2 (8)

JTt ¼
ffiffiffi
f

p ðRVt �MRVrÞRV�1
t�

0:96max
	
1;MRQt



RV2

t

��1=2 (9)

MRQt;f ¼ 3πf

9π þ 72� 52
ffiffiffi
3

p
�

f
f � 2

�Xf�1

j¼2

�
med

��rt;j�1

��; ��rt;j��; ��rt;jþ1

���4 (10)

The increased number of parameters does not guarantee improved out-of-sample forecast accuracy. Therefore, in our analysis, we
use a simplified version of the HAR model with continuous and jump components in that only the previous day’s volatility is decom-
posed into its continuous and potential jump components.9 The CJ-HAR model is as follows:

RVH
tþ1 ¼ β1 þ β2CC

D
t þ β3JC

D
t þ β4RV

W
t þ β5RV

M
t þ εt (11)

where CCD and JCD represent the continuous component and jump component of realized volatility, respectively, for the previous day.
We are interested not only in comparing the forecasting accuracy of the specification defined above with the plain HAR model but

also in how well the following augmented specification IV-CJ-HAR will compare with the CJ-HAR model:

RVH
tþ1 ¼ β1 þ β2CC

D
t þ β3JC

D
t þ β4RV

W
t þ β5RV

M
t þ

β6IV
D
t þ β7IV

W
t þ β8IV

M
t þ εt (12)

Variables IVD, IVW , and IVM stand for the implied volatility derived from options with one-day, one-week and one-month maturity,
respectively.

3.1.3. Q-HAR and IV-Q-HAR
Most of the empirical studies on volatility modeling silently assume that the measurement error of the realized volatility estimator is

constant over time. However, Bollerslev et al. (2016) argues that this is not likely and shows how ignoringmeasurement error leads to an
attenuation bias, i.e., the latent integrated volatility is more persistent than the observed realized volatility. Bollerslev et al. (2016)
propose weighting each volatility with the variance of the measurement error. During days when the variance of measurement error is
low, the realized volatility should be more indicative of future volatility than during days with a higher variance of measurement error.
In this way, the time variation in the measurement error is considered. As the measurement error is estimated through theMRQt defined
before, we can directly specify the Q-HAR model as follows:
8 For recent applications of these HAR model extensions, see Çelik and Ergin (2014) and Ma et al. (2017).
9 A similar approach is not uncommon in the volatility literature; see Patton and Sheppard (2015) or Bollerslev et al. (2016).
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RVH
tþ1 ¼ β1 þ β2 þ β2Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MRQD

t

q
RVD

t þ β3RV
W
t þ β4RV

M
t þ εt (13)
� �

As before, the alternative specification is the one augmented with implied volatilities and denoted as IV-Q-HAR as follows:

RVH
tþ1 ¼ β1 þ

�
β2 þ β2Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MRQD

t

q �
RVD

t þ β3RV
W
t þ β4RV

M
t þ

β5IV
D
t þ β6IV

W
t þ β7IV

M
t þ εt (14)

3.1.4. SV-HAR and IV-SV-HAR
The asymmetric volatility effect is a well-documented feature of financial markets and states that during periods of market downturn,

volatility tends to be larger than during periods when the market thrives. With positive and negative semi-volatilities, it is straight-
forward to incorporate this idea into volatility modeling through the HAR models (e.g., Barndorff-Neilsen et al., 2010; Patton &
Sheppard, 2015; Sevi, 2014). Positive (RVPt) and negative (RVNt) semi-volatilities are calculated as squared sums of positive and
negative intra-day returns (rt;i) as follows:

RVPt ¼
X
i¼2

r2t;iI½rt;i > 0� (15)

RVNt ¼
X
i¼2

r2t;iI½rt;i < 0� (16)

where I represents the indicator function that returns one if the condition in square brackets holds and is zero otherwise.
If asymmetric volatility holds, it might be that negative semi-volatilities are more relevant for forecasting the next period’s volatility

than positive semi-volatilities, and they therefore deserve their persistence parameter. Consequently, the SV-HAR model is defined as
follows:

RVH
tþ1 ¼ β1 þ β2RVP

D
t þ β3RVN

D
t þ β4RV

W
t þ β5RV

M
t þ εt (17)

Regressors RVPD
t and RVND

t denote realized positive and negative semi-volatilities, respectively, for the previous day and replace RVD
t

in the model specification. The augmented version IV-SV-HAR contains implied volatilities with maturities of one day, one week and one
month (IVD, IVW , IVM) and is specified as follows:

RVH
tþ1 ¼ β1 þ β2RVP

D
t þ β3RVN

D
t þ β4RV

W
t þ β5RV

M
t þ

β6IV
D
t þ β7IV

W
t þ β8IV

M
t þ εt (18)

We decompose only the one-day lagged realized volatility (RVD) into positive and negative semivariances, following the studies of
Sevi (2014) and Patton and Sheppard (2015). This idea is similar to the case of the HAR-CJ model.
3.2. Forecasting procedure

Volatility tends to cluster into periods of excess volatility. Although volatility shocks are difficult to forecast, they are of high interest
to market participants as during such times, accurate volatility forecasts are most important. In the context of volatility models, sudden
spikes in volatility often lead to the heteroskedasticity of forecast errors, and the estimated autoregressive parameters are less reliable.
Patton and Sheppard (2015) therefore recommend estimating HAR models through weighted least squares (WLS), where weights are
inverse fitted values from the initial ordinary least squares (OLS) estimation. Thus, extreme volatility receives a lower weight. All in- and
out-of-sample regressions were estimated through the WLS. The out-of-sample study is performed in an expanding window framework
where the initial estimation window is set to 1;000 observations. After forecasting one-, five-, and twenty-two-day-ahead forecasts,
additional observation is added, and all models are re-estimated, after which the next forecast is calculated. The first forecast used for
evaluation purposes is the 1;001 forecast. As a result, we obtained 2;083 volatility forecasts.
3.3. Combination forecasts

Forecast combination is a popular approach to improve the forecasting performance from individual models. The idea was intro-
duced by Bates and Granger (1969) for airline passenger data. Since then, this idea has been investigated by many authors, for example,
Clemen (1989), Timmermann (2006) and Newbold and Harvey (2007). In general, different model specifications could comprise
different information from the underlying data, and forecast combination could lead to better performance, especially when individual
forecasts are unbiased and not highly correlated.

The idea of using combination forecasts in this study is motivated by the fact that when benefits from combination forecasts are
utilized, adding implied volatility might not be useful at all. For example, we might combine all forecasts that exclude information from
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implied volatility. Such a forecast might not be worse than a combination forecast from implied volatility models (or individual implied
volatility models). If this is true, there is little benefit from including implied volatility into forecasting realized volatility.

A number of different approaches to combining individual forecasts exist, e.g., Genre et al. (2013) compare many combination
methods with the simplest method of a simple average. The authors conclude that a simple average is not the best combination method
all the time, but it is very difficult to pick a single preferred method. We therefore use the simple average of individual forecasting
models as an unconditional approach to combining forecasts. Regarding volatility forecasting, such a naïve approach was challenged by
Wang andWang (2016) in favor of Bayesianmodel averaging and dynamicmodel averaging by using a sample of S&P 500 index returns.
In contrast, in Santos and Ziegelmann (2014), Ly�ocsa and Moln�ar (2016), and Ly�ocsa et al. (2017), simple averaging was not worse than
individual forecasting models. We follow the latter approach and take the simple average of individual forecasts across two groups of
models as follows:

� Across all individual volatility forecast models that do not include information from implied volatility.
� Across all individual volatility forecast models that include information from implied volatility.

3.4. Forecast evaluation

First, we compare the average forecast accuracy by using two loss functions. Next, a statistical test compares a set of competing
volatility forecasting models with a given confidence level. This iterative testing procedure leads to set of superior forecasting models.

3.4.1. Loss function
Forecasts are evaluated with loss functions that provide a consistent ranking of forecasts, even if the proxy of the underlying latent

volatility is measured with noise (Patton, 2011), the MSE and QLIKE, which are defined as follows:

MSEi ¼ 1
n

Xn

i¼1

�cRV i;t � RVt

�2

(19)

QLIKEi ¼ 1
n

Xn

i¼1

�
RVtcRV i;t

� ln
RVtcRV i;t

� 1
�

(20)

where dRV i;t is the forecasted realized variance at time t of model i, and RVt is the proxy of the true volatility, specifically, the 5 min
realized variance.

The choice between the two loss functions depends on the application at hand. Although MSE weights volatility over- and under-
estimation equally and extreme forecast errors are increasingly penalized, the QLIKE weights forecast under-estimation more
severely than they forecast over-estimation and are less sensitive to extremes.

3.4.2. Model confidence set
We follow the sequential testing procedure of Hansen et al. (2011) that leads to the set of superior forecasting models. This procedure

is a top-down approach in which at each step, a null hypothesis of the equal predictive ability of competing models is tested. If the
hypothesis is rejected, the model with the worst relative loss is excluded, and the testing procedure is repeated until the null of equal
predictive ability cannot be rejected at given confidence 1� α (we set α ¼ 0:05). Let the loss function for the ith model be defined as
follows:

Lði; tÞ¼ L
�cRV i;t ;RVt

�
(21)

When two competing models i and j are compared, a loss differential Dði; j; tÞ is evaluated as follows:

Dði; j; tÞ¼Lði; tÞ � Lðj; tÞ (22)

Letm denote the number of competing models and Dði; :; tÞ denote the average loss of model i at time t with respect to the remaining
models as follows:

Dði; :; tÞ¼ 1
m� 1

X
j;j 6¼i

Dði; j; tÞ (23)

3.5. The hypothesis of interest is defined as

H0 : E½Dði; :Þ�¼ 0; for all; i ¼ 1;…;m (24)

H1 : E½Dði; :Þ� 6¼ 0; for some; i ¼ 1;…;m (25)
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Given that di;: is an average of the average loss differential of the ith model with respect to the other competing models, the statistic is
defined as follows:

ti;: ¼ di;:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðdi;:Þ

q (26)

The denominator is a block bootstrap estimator of the variance of di;:. Finally, the test statistic is defined as follows:

Tmax ¼maxðiÞti;: (27)

The distribution under the null hypothesis of the test statistics Tmax is bootstrapped as was the variance before. If the null hypothesis
is rejected, then the model with the highest ti;: is eliminated, and the testing procedure is repeated until the null is not rejected.

4. Results

This section describes our results from the in-sample and out-of-sample analysis. First, we perform preliminary data analysis, and
then, we move to the model estimation and forecasting.

4.1. Preliminary data analysis

The descriptive statistics of our volatility measures presented in Table 1 show that the annualized average volatility was 95.705,
which corresponds to 9:783%when square root is taken and is a similar number to 9:10% found in Bollerslev et al. (2018, Table B1). The
results also seem to confirm some stylized facts known in the literature. For example, the distribution of the volatility is skewed to the
right and shows long memory properties as even at lag 100, the autocorrelation is a considerable 0.221.10

The jump and continuous volatility components show very distinct statistical properties. The jumps are considerably less persistent,
while the continuous volatility components have persistence above the realized volatility. The decomposition of the realized volatility
into its continuous and jump components appears to be helpful. Andersen, Bollerslev, and Diebold (2007) argued that because the two
components are so different, they may contain distinct predictive power of future volatility. Similarly, negative semi-volatilities have
higher persistence than positive semi-volatilities, which also suggests that the two components might have different roles in forecasting
future volatility.

Finally, we turn our attention to implied volatilities. The annualized implied volatility calculated from the options that expire the
next day is much higher than the corresponding RV . The differences between the two volatility measures can be attributed to the
scaling.11 However, as we use IVt as the independent variables, the different scaling is of little importance to our empirical findings. The
persistence of the two volatility measures is also different. At the first lag, the results are similar, but IVD has an even higher dependence
at the 10th lag than at the first lag. IV decays much slower than RV . These results suggest that implied volatility is distinct from realized
volatility and might contain different information.

The time series plots in Fig. 1 show that the daily, weekly andmonthly implied volatilities peaked at the end of October 2008, around
the period when Lehman Brothers filed for bankruptcy and when the U.S. presidential election occurred in the United States. RV, MRQ,
RVP, and RVN reached maximal values on 18 March 2015, the day in which the Federal Open Market Committee (FOMC) meeting
signaled possible rate hikes.
Table 1
Descriptive statistics of volatility measures.

Mean
ffiffiffiffiffiffiffiffiffiffiffiffi
Mean

p
St.Dev. Skew. Kurt. Min. Median Max. ρð1Þ ρð10Þ ρð100Þ ρð250Þ

RV 95.705 9.783 105.620 5.032 43.995 0.011 67.536 1671.232 0.610 0.472 0.221 0.014
MRQ 56.779 7.535 509.870 29.796 1052.850 0.000 8.083 20858.825 0.035 0.030 0.022 �0.007
JC 12.883 3.589 24.356 6.828 69.336 0.000 6.358 398.680 0.071 0.094 0.054 �0.014
CC 82.822 9.101 93.150 5.129 45.648 0.011 56.562 1536.965 0.657 0.512 0.231 0.019
RVP 48.396 6.957 58.038 5.893 59.402 0.005 32.859 1014.250 0.520 0.376 0.186 0.013
RVN 47.308 6.878 53.733 5.000 45.184 0.006 31.885 889.019 0.582 0.475 0.216 0.009
IVD 134.632 11.603 150.174 4.301 30.063 5.954 92.930 2172.865 0.662 0.715 0.332 0.092

IVW 112.772 10.619 104.253 3.533 18.872 13.988 84.318 1127.952 0.961 0.807 0.311 0.015

IVM 109.930 10.485 90.059 3.014 12.697 17.347 86.211 834.343 0.987 0.910 0.380 0.071

Note: RV¼ Realized Volatility; MRQ¼Median Realized Quarticity; JC¼ Jump Component of RV; CC¼ Continuous Component of RV; RVP¼ Realized
Semi-Volatility Positive; RVN ¼ Realized Semi-Volatility Negative; and IVD, IVW, IVM ¼ Implied volatilities from options with one-day, one-week, and
one-month maturity, respectively. ρð:Þ is the value of the auto-correlation coefficient at the given lag by using the Lin and McLeod (2006) test. All
auto-correlation coefficients are significant at least at the 0.05 significance level.

10 Again, this result is similar to the finding in Bollerslev et al. (2018) of 0.22.
11 For example, VIX is calculated over 30 days (including weekends) and then scaled to annual values for 12 months.
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Fig. 1. Time series plots of volatility measures.
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4.2. In-sample results

The in-sample results of our models are summarized in Tables 2–4. The coefficients in bold are statistically significant at α ¼ 5%.
Under each coefficient, we report the standard errors in brackets, and the model fit is reported at the bottom of each table.

When we examine the statistical significance of individual regressors, we notice that at least one of three coefficients loaded on
implied volatility becomes significant in all models. This result is robust across different predictive horizons. The demand and supply
factors that drive pricingmight be noisy from a short-term perspective; therefore, the IVs from options with a shorter maturity also might
be expected to be too noisy to contain valuable information concerning future realized volatility. Moreover, the IVs should represent the
overall expectations of the market participants about the future volatility of the spot market, but it is not guaranteed as arbitrage trading
might either not be that profitable or be too risky. However, our results show that even one-day and one-week-ahead market expec-
tations are actually useful with respect to future realized volatility. More specifically, for the one-day and one-week-ahead regressions,
the most important regressor appears to be daily and weekly implied volatilities (IVD; IVW ), and for one-month-ahead forecasts, all
implied volatilities are of statistical importance. Implied volatility therefore seems to have merit in predictive volatility regressions.
Interestingly, for shorter forecast horizons, the monthly implied volatility, which is the implied volatility used in most existing empirical
studies, seems to matter the least.

Comparing individual models with their non-implied volatility versions shows that the inclusion of implied volatility tends to
decrease the size of the coefficients that correspond to realized volatilities. For example, in Table 2, the coefficient of the lagged daily
realized volatility of 0.253 in the plain RV-HARmodel decreases to 0.131 for the IV-HARmodel. This behavior is also observed for other
model specifications and predictive forecast horizons. However, this effect also seems stronger with longer forecast horizons. Especially
in the case of one-week and one-month-ahead volatility predictions, the inclusion of implied volatility causes several regressors of
realized volatility to be insignificant.

The results reported in Tables 2–4 show that the IVs seem to almost subsume the information content of RVs, and compared to the
RV-HAR model, the FIV-HAR model leads to a higher mode fit. At the same time, including past RVs into the FIV-HAR model, which
produces the IV-HAR model, increases the model fit only slightly, which suggests that past RVs contain only little incremental infor-
mation that is useful for predicting future RV. The general pattern that we observe is that the R2 in the individual models with IV
increased (also for the adjusted R2) considerably by approximately 0.10 for one-day, by 0.15 for one-week and by 0.06 for one-month-
ahead volatility predictions. These fit improvements are non-trivial, as given the baseline R2, they correspond to an increase of the fit of
the model by approximately 29%, 27%, and 9% for one-day, one-week and one-month-ahead volatility predictions, respectively. In
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Table 2
One day ahead variance predictive regressions.

RV-HAR FIV-HAR IV-HAR CJ-HAR IV-CJ-HAR Q-HAR IV-Q-HAR PS-HAR IV-PS-HAR

Intercept 7:235*** 8:313*** 6:850*** 8:659*** 7:596*** 6:219*** 6:359*** 7:226*** 6:876***

ð1:736Þ ð1:620Þ ð1:380Þ ð1:693Þ ð1:369Þ ð1:668Þ ð1:344Þ ð1:731Þ ð1:374Þ
RVD 0:253*** 0:131*** 0:331*** 0:167***

ð0:045Þ ð0:031Þ ð0:051Þ ð0:032Þ
RVW 0:313*** 0:115** 0:265*** 0:096* 0:288*** 0:108* 0:313*** 0:116**

ð0:072Þ ð0:043Þ ð0:074Þ ð0:044Þ ð0:071Þ ð0:042Þ ð0:072Þ ð0:042Þ
RVM 0:358*** � 0:045 0:327*** � 0:043 0:337*** � 0:047 0:360*** � 0:046

ð0:051Þ ð0:048Þ ð0:048Þ ð0:048Þ ð0:053Þ ð0:049Þ ð0:052Þ ð0:048Þ
IVD 0:057* 0:067** 0:067** 0:069** 0:066*

ð0:024Þ ð0:026Þ ð0:025Þ ð0:025Þ ð0:026Þ
IVW 0:735*** 0:607*** 0:590*** 0:595*** 0:608***

ð0:068Þ ð0:071Þ ð0:071Þ ð0:069Þ ð0:070Þ
IVM � 0:029 � 0:071 � 0:078 � 0:074 � 0:068

ð0:058Þ ð0:047Þ ð0:047Þ ð0:046Þ ð0:047Þ
CCD 0:390*** 0:203***

ð0:054Þ ð0:041Þ
JCD � 0:152* � 0:061

ð0:065Þ ð0:048Þ
RVD �

MRQD
� 0:002*** � 0:001*

ð0:000Þ ð0:000Þ
RVPD 0:269*** 0:178***

ð0:077Þ ð0:048Þ
RVND 0:233*** 0:076*

ð0:063Þ ð0:038Þ
R2 0.361 0.465 0.472 0.373 0.476 0.365 0.473 0.362 0.474
Adj. R2 0.360 0.464 0.471 0.372 0.475 0.364 0.472 0.361 0.473

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. Significances are based on the estimation of the variance-
covariance matrix of coefficients by using the automatic bandwidth selection as in Whitney et al., (1994) with a quadratic spectral weighting
scheme. We use the implementation procedures provided in Zeileis (2004). The variance inflation factors are all below 10. Model variables: RVD, RVW ,
RVM ¼ Realized Volatility for the previous day and average for the previous week and month, respectively; IVD, IVW , IVM ¼ Implied Volatility from
options with one-day, one-week, and one-month maturity, respectively; CCD ¼ Continuous Component from the previous day; JCD ¼ Jump Component
for the previous day; MRQD ¼ Median Realized Quarticity; RVPD ¼ Realized Semi-Volatility Positive for the previous day; and RVND ¼ Realized
Semi-Volatility Negative for the previous day.
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contrast to these improvements, a comparison of the RV-HAR with the CJ-HAR, Q-HAR and PS-HAR models (i.e., the models without
implied volatility) shows that different model specifications cause only mild improvements to the fit of the model.

Accordingly, the results in Tables 2–4 show not only that implied volatility is superior to the model with only realized volatility but
also that realized volatility provides new incremental information for volatility models, as the (parameter-adjusted) fit of the IV-HAR
model (which includes RV and IV) is slightly above that of the FIV-HAR model (with only IV information) across all forecast horizons.
4.3. Out of sample results

The in-sample results do not necessarily manifest into the same out-of-sample results, which are usually of higher importance for
market participants. For one-day, one-week and one-month-ahead volatility forecasts, the results are presented in Table 5. For each
model, we report the average values of two loss functions and compare the percentage improvement (negative value) with respect to the
RV-HAR model. Panel A includes the results for the individual models, and panel B shows the combinations of the model forecasts. In
Table 5, we compare the performance of the forecasts based on the model confidence set of Hansen et al. (2011). In Table 6, we perform
a bi-variate comparison of models, i.e., within each class of HAR models, we compare the performance of the models with and without
implied volatility.

4.3.1. Evidence from individual forecasts
Before we proceed to interpret the key results, we establish several characteristics of our findings. In Fig. 2, we plot the realized

volatility and corresponding forecasts from selected forecasting models across the out-of-sample period. The forecasting models
evidently do not catch all ‘spikes’ in volatility, which implies heteroskedastic forecast errors. Such errors are often observed in the
volatility literature (e.g. Ly�ocsa & Moln�ar, 2016). With respect to the benchmark plain RV-HAR model, almost all individual forecasts
fare better. The benchmark model is outperformed more for the one-week-ahead forecasts. In addition, as we expected, the forecast
combinations are better than the plain RV-HAR model. Interestingly, a comparison among the different model specifications shows that
regardless of the extensions of the standard RV-HAR model, all models lead to similar forecast improvements. In addition, the forecast
improvements are somewhat higher for the QLIKE loss function. Compared to the plain RV-HAR model, the forecast improvements
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Table 3
One week ahead variance predictive regressions.

RV-HAR FIV-HAR IV-HAR CJ-HAR IV-CJ-HAR Q-HAR IV-Q-HAR PS-HAR IV-PS-HAR

Intercept 9:309*** 10:480*** 8:790*** 10:008*** 8:863*** 8:392** 8:515*** 9:354*** 8:794***

ð2:682Þ ð1:725Þ ð1:795Þ ð2:607Þ ð1:795Þ ð2:596Þ ð1:866Þ ð2:660Þ ð1:795Þ
RVD 0:094*** 0.005 0:164*** 0.027

ð0:019Þ ð0:012Þ ð0:027Þ ð0:018Þ
RVW 0:276*** 0.069 0:254** 0.067 0:251** 0.064 0:273*** 0.068

ð0:080Þ ð0:050Þ ð0:079Þ ð0:050Þ ð0:078Þ ð0:047Þ ð0:079Þ ð0:049Þ
RVM 0:532*** 0.098 0:519*** 0.098 0:511*** 0.095 0:530*** 0.098

ð0:088Þ ð0:072Þ ð0:087Þ ð0:072Þ ð0:085Þ ð0:066Þ ð0:088Þ ð0:072Þ
IVD 0:040** 0:040** 0:040** 0:040** 0:040**

ð0:015Þ ð0:014Þ ð0:014Þ ð0:014Þ ð0:014Þ
IVW 0:685*** 0:642*** 0:641*** 0:637*** 0:642***

ð0:068Þ ð0:074Þ ð0:074Þ ð0:072Þ ð0:074Þ
IVM 0.024 � 0:067 � 0:067 � 0:069 � 0:068

ð0:062Þ ð0:053Þ ð0:053Þ ð0:052Þ ð0:053Þ
CCD 0:155*** 0.011

ð0:025Þ ð0:016Þ
JCD � 0:089* � 0:011

ð0:035Þ ð0:026Þ
RVD �

MRQD
� 0:001*** � 0:000
ð0:000Þ ð0:000Þ

RVPD 0.028 � 0:013
ð0:044Þ ð0:020Þ

RVND 0:169** 0.028
ð0:058Þ ð0:030Þ

R2 0.560 0.711 0.717 0.562 0.717 0.567 0.718 0.560 0.717
Adj. R2 0.559 0.711 0.716 0.562 0.716 0.566 0.718 0.560 0.716

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. Significances are based on the estimation of the variance-
covariance matrix of coefficients by using the automatic bandwidth selection as in Whitney et al., (1994) with a quadratic spectral weighting
scheme. We use the implementation procedures provided in Zeileis (2004). The variance inflation factors are all below 10. Model variables: RVD, RVW ,
RVM ¼ Realized Volatility for the previous day and average for the previous week and month, respectively; IVD, IVW , IVM ¼ Implied Volatility from
options with one-day, one-week, and one-month maturity, respectively; CCD ¼ Continuous Component from the previous day; JCD ¼ Jump Component
for the previous day; MRQD ¼ Median Realized Quarticity; RVPD ¼ Realized Semi-Volatility Positive for the previous day; and RVND ¼ Realized
Semi-Volatility Negative for the previous day.
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(negative values) for the one-day-ahead, one-week-ahead, and one-month-ahead forecasts range from 0:2%, � 0:5%, and 0:2% to �
13:2%, � 38:9%, and � 22:8%, respectively, for the MSE and from 0:3%, 0:0%, and 0:1% to � 17:3%, � 42:1%, and � 20:8%,
respectively, for the QLIKE.

Our key finding is that the inclusion of implied volatilities systematically improves the forecast accuracy for both loss functions
across all models and forecast horizons. Comparing the loss functions within each class of volatility model shows that the inclusion of
implied volatilities always leads to improved forecasts (see Table 6). The improvements for theMSE range from� 11:36% to � 38:60%,
with stronger improvements for one-week-ahead forecasts. The forecast improvements based on QLIKE are even larger as they range
from �14:76% to � 41:95%.

Comparing the forecasting accuracy of the RV-HAR, FIV-HAR and IV-HAR models shows that the implied volatility FIV-HAR model
outperforms the RV-HAR model, while the IV-HAR model leads to further improvements. These results therefore confirm that the in-
sample results reported earlier also manifest into improved out-of-sample forecasts. As IVs appear to be superior to past RVs, it is
therefore not surprising to see that different HAR model specifications (a decomposition of RVs into continuous and jump components,
the use of semi-volatilities, or the estimation of measurement error) lead to much smaller benefits compared to the simple addition of
implied volatilities, which seems to be the preferred choice when forecast accuracy is of interest.

4.3.2. Evidence from combination forecasts
An important question is whether the improved forecasting accuracy of the individual forecasting models that include implied

volatility is matched by the improved forecasting accuracy from the combination forecasts that do not include implied volatility. If this
were true, then for forecasting purposes, the use of implied volatility is limited as it would be sufficient to take the combination forecast
of the models that ignore the information contained in implied volatilities. However, as shown in Tables 5 and 6, this is not the case, as
the combination forecasts that do not contain information from implied volatilities are clearly outperformed by the individual and
combination forecasts that use the information contained in implied volatilities.

4.3.3. Statistical evaluation of forecast improvements
In Table 5, the symbol z denotes whether a given row model was included in the superior set of models as indicated by the model

confidence set approach of Hansen et al. (2011). All models in this superior set of models are assumed to have similar predictive power.
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Table 4
One month ahead variance predictive regressions.

RV-HAR FIV-HAR IV-HAR CJ-HAR IV-CJ-HAR Q-HAR IV-Q-HAR PS-HAR IV-PS-HAR

Intercept 13:979*** 14:712*** 12:176*** 14:335*** 12:085*** 13:143*** 11:805*** 14:032*** 12:194***

ð3:720Þ ð2:604Þ ð2:875Þ ð3:635Þ ð2:834Þ ð2:840Þ ð2:324Þ ð3:700Þ ð2:873Þ
RVD 0:051*** 0.004 0:109*** 0.032

ð0:013Þ ð0:009Þ ð0:024Þ ð0:018Þ
RVW 0:201** 0.084 0:190** 0.086 0:182** 0.078 0:198** 0.083

ð0:063Þ ð0:049Þ ð0:062Þ ð0:049Þ ð0:065Þ ð0:050Þ ð0:063Þ ð0:049Þ
RVM 0:601*** 0:203* 0:594*** 0:203* 0:582*** 0:200* 0:598*** 0:203*

ð0:080Þ ð0:101Þ ð0:080Þ ð0:101Þ ð0:076Þ ð0:089Þ ð0:080Þ ð0:101Þ
IVD 0:051* 0:051** 0:051** 0:051** 0:051**

ð0:021Þ ð0:019Þ ð0:019Þ ð0:016Þ ð0:019Þ
IVW 0:231** 0:180** 0:181** 0:175** 0:178**

ð0:086Þ ð0:068Þ ð0:068Þ ð0:059Þ ð0:068Þ
IVM 0:437*** 0:258* 0:259* 0:256** 0:258*

ð0:089Þ ð0:118Þ ð0:119Þ ð0:095Þ ð0:119Þ
CCD 0:080*** � 0:003

ð0:023Þ ð0:017Þ
JCD � 0:032 0.025

ð0:045Þ ð0:040Þ
RVD �

MRQD
� 0:001*** � 0:000
ð0:000Þ ð0:000Þ

RVPD � 0:009 � 0:015
ð0:033Þ ð0:024Þ

RVND 0:122* 0.030
ð0:051Þ ð0:037Þ

R2 0.618 0.668 0.681 0.618 0.681 0.623 0.683 0.619 0.681
Adj. R2 0.618 0.668 0.681 0.618 0.681 0.623 0.682 0.619 0.681

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. Significances are based on the estimation of the variance-
covariance matrix of coefficients by using the automatic bandwidth selection as in Whitney et al., (1994) with a quadratic spectral weighting
scheme. We use the implementation procedures provided in Zeileis (2004). The highest variance inflation factor is 10.18 for IVM

t , but the corre-
sponding coefficients are significant in all models. Model variables: RVD, RVW , RVM ¼ Realized Volatility for the previous day and average for the
previous week and month, respectively; IVD, IVW , IVM ¼ Implied Volatility from options with one-day, one-week, and one-month maturity, respec-
tively; CCD ¼ Continuous Component from the previous day; JCD ¼ Jump Component for the previous day;MRQD ¼Median Realized Quarticity; RVPD

¼ Realized Semi-Volatility Positive for the previous day; and RVND ¼ Realized Semi-Volatility Negative for the previous day.
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The initial set consists of all models with and without implied volatilities alike (for a given loss function and forecast horizon). However,
the superior set for one-day, one-week, and one-month-ahead forecasts consists only of the models that include implied volatility. This
result provides substantial statistical evidence that implied volatility matters for forecasting purposes. For one-day and one-week-ahead
forecasts, the superior set of models according to QLIKE contains only models with both realized and implied volatilities, which in
contrast suggests that RVs contain incremental information with respect to IVs, particularly for shorter time horizons.

Table 6 compares the models in a bi-variate setting.12 The results confirm statistically significant differences in the forecasting
accuracy of the models and combination forecasts with and without implied volatility included. The model specifications with implied
volatility always outperform their model versions without implied volatility in a statistically significant manner. The same results apply
to the combinations of forecasts. This feature is also robust for all forecasting horizons, but implied volatility helps most for one-week
forecasting horizons.

4.3.4. Dissecting the superior performance of IV models
Accurate forecasts are most valued during uncertain times. We inspect when forecast improvements are generated. We therefore

stratify and average the forecast losses with respect to the realized volatility. In Table 7, we compare the average loss values for the days
after a day with an RV that belongs to the top 10% highest realized volatilities or lower. When the ratio is lower, the forecast
improvement of the competing model is larger than the benchmark model.

The emerging pattern is that forecast improvements are the largest for the days that follow periods of high market uncertainty. This
effect declines with increased forecast horizons. For example, for one-day-ahead forecasts, the improvements are up to 35%, while for
one-month-ahead forecasts, the improvements after high vs. low volatile periods tend to be very similar but are still larger after more
uncertain days.

Finally, in Fig. 3, we plot the percentage difference between the cumulative loss function of the benchmark HAR model and the best
performing HAR model with IVs. Across all forecast horizons, average forecast improvements appear to stabilize after one year of data.
The day-ahead volatility forecast improvements are stable across the entire time period. Five-day-ahead and one-month-ahead volatility
12 This comparison uses the model confidence set of Hansen et al. (2011) with an initial set of two models only.
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Table 5
One day ahead, one week ahead, and one month ahead forecasts evaluation.

Panel A: Individual model forecasts

One day One week One month

MSE QLIKE MSE QLIKE MSE QLIKE

RV-HAR 5992 0.165 2260 0.088 1402 0.067
FIV-HAR 5382 �10.2% 0.143 �13.8% 1396 �38.3% z 0.053 �39.3% 1140 �18.7% z 0.055 �16.7%
IV-HAR 5227 �12.8% z 0.138 �16.6% 1380 �38.9% z 0.051 �41.5% z 1088 �22.4% z 0.053 �19.8% z

CJ-HAR 5915 �1.3% 0.161 �3.0% 2249 �0.5% 0.086 �1.5% 1405 0.2% 0.066 �0.1%
IV-CJ-HAR 5200 �13.2% z 0.137 �17.3% z 1382 �38.9% z 0.051 �41.4% z 1090 �22.2% z 0.054 �19.5% z

Q-HAR 5875 �1.9% 0.166 0.3% 2230 �1.4% 0.087 �0.2% 1389 �0.9% 0.066 �0.4%
IV-Q-HAR 5208 �13.1% z 0.138 �16.4% 1408 �37.7% z 0.051 �42.1% z 1101 �21.4% z 0.053 �20.8% z

SV-HAR 6003 0.2% 0.166 0.2% 2249 �0.5% 0.088 0.0% 1396 �0.4% 0.067 0.1%
IV-SV-HAR 5231 �12.7% z 0.138 �16.6% 1381 �38.9% z 0.051 �41.5% z 1089 �22.4% z 0.054 �19.5% z
Panel B: Unconditional combination model forecasts

IV models 5209 �13.1% z 0.137 �16.9% z 1379 �39.0% z 0.051 �41.5% z 1082 �22.8% z 0.053 �20.5% z
non-IV models 5921 �1.2% 0.164 �0.8% 2237 �1.0% 0.087 �0.6% 1392 �0.7% 0.066 �0.4%
MCS p-value 0.154 0.152 0.545 0.247 0.618 0.637

Models: RV-HAR ¼ benchmark model that uses only Realized Volatilities; FIV-HAR ¼ alternative to RV-HAR that contains only implied volatilities; IV-HAR ¼ combination of RV-HAR and IV-HAR; CJ-HAR
¼ HAR specification that decomposes RVD to continuous and jump components; IV-CJ-HAR ¼ CJ-HAR with added implied volatilities; Q-HAR ¼ HAR specification that controls for measurement error; IV-
Q-HAR ¼ Q-HAR with added implied volatilities; SV-HAR ¼ HAR specification that decomposes RVD to positive and negative semi-volatilities; and IV-SV-HAR ¼ SV-HAR with added implied volatilities.
Apart from the average value of the loss function, we report in [%] the improvement compared to the benchmark HAR model. The symbol z denotes that the given model (in the row) belongs to the set of
superior models. In the row MCS p-value, we report the p-value of the test of equal predictive ability of the models that belong to the set of superior models. Therefore, a higher level of the p-value suggests
that at the given significance level, the remaining models have the same predictive ability.
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Table 6
Comparing IV and non-IV models forecasting accuracy.

One day One week One month

MSE QLIKE MSE QLIKE MSE QLIKE

Panel A: Comparing individual models

HAR vs. IV-HAR � 12:8%*** � 16:6%**** � 38:9%*** � 41:5%**** � 22:4%*** � 19:8%***

CJ-HAR vs. IV-CJ-HAR � 12:1%** � 14:8%**** � 38:6%*** � 40:6%**** � 22:4%*** � 19:4%***

Q-HAR vs. IV-Q-HAR � 11:4%*** � 16:7%**** � 36:8%*** � 42:0%**** � 20:7%*** � 20:5%****

SV-HAR vs. IV-SV-HAR � 12:9%*** � 16:8%**** � 38:6%*** � 41:5%**** � 22:0%*** � 19:6%***

Panel B: Comparing combination forecasts; non IV models to IV models
Mean � 12:0%*** � 16:3%**** � 38:4%*** � 41:2%**** � 22:3%*** � 20:2%****

Note: Symbols”*“,”**“,”***“, and”****” denote statistical significance at the 10%, 5%, 1%, and 0.1% levels, respectively, of the test of the equal
predictive power of the MCS test applied only on two models. Statistical significance suggests that the model with the lower loss value outperforms the
model with a higher loss value. Models: CJ-HAR¼HAR specification that decomposes RVD to continuous and jump components; IV-CJ-HAR¼ CJ-HAR
with added implied volatilities; Q-HAR ¼ HAR specification that controls for measurement error; IV-Q-HAR ¼ Q-HAR with added implied volatilities;
SV-HAR ¼ HAR specification that decomposes RVD to positive and negative semi-volatilities; and IV-SV-HAR ¼ SV-HAR with added implied
volatilities.

Fig. 2. Time series plots of observed volatility and forecasts from the best model.
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forecasts have improved since half of the year into 2016 until the year ends. These improvements in forecasting accuracy seem to
coincide with the time around the Brexit referendum in June 2016 that led to a sharp decline in the EUR against the USD and the time of
the November U.S. presidential elections that led to the strengthening of the USD over the EUR and other currencies.13 In general, the
results in Fig. 3 show that forecast improvements are pervasive across the time.
4.4. ARFIX-GARCH approach

As we argue in Section 3, the HAR model is currently considered to be one of the best performing volatility models, which is easy to
adjust for exogenous variables and easy to implement and interpret. To observe whether our results are an artifact of the HAR models,

we also estimate the following ARFIX-GARCH model: ð1� LÞdðRVtþ1 � β0 � β1IVD
t � β2IVW

t � β3IVM
t Þ ¼ εtþ1, where L is the lag
13 This strengthening occurred due to expectations of a fiscal stimulus from the new White House cabinet and the subsequent rise in inflation.
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Table 7
Stratified out-of-sample forecast losses.

MSE QLIKE

Benchmark model Competing IV-HAR model top 10% RV bottom 90% RV top 10% RV bottom 90% RV

Panel A: One day ahead forecasts

RV-HAR FIV-HAR 0.70 0.95 0.82 0.87
RV-HAR IV-HAR 0.65 0.93 0.70 0.85
CJ-HAR IV-CJ-HAR 0.66 0.94 0.74 0.86
Q-HAR IV-Q-HAR 0.70 0.93 0.72 0.85
SV-HAR IV-SV-HAR 0.65 0.93 0.69 0.85
Cmb-HAR Cmb-IV-HAR 0.66 0.94 0.70 0.85

Panel B: One week ahead forecasts
RV-HAR FIV-HAR 0.56 0.64 0.51 0.62
RV-HAR IV-HAR 0.55 0.64 0.48 0.60
CJ-HAR IV-CJ-HAR 0.55 0.64 0.49 0.61
Q-HAR IV-Q-HAR 0.62 0.64 0.51 0.59
SV-HAR IV-SV-HAR 0.57 0.64 0.49 0.60
Cmb-HAR Cmb-IV-HAR 0.57 0.64 0.49 0.60

Panel C: One month ahead forecasts
RV-HAR FIV-HAR 0.69 0.85 0.69 0.85
RV-HAR IV-HAR 0.63 0.83 0.66 0.82
CJ-HAR IV-CJ-HAR 0.64 0.82 0.67 0.82
Q-HAR IV-Q-HAR 0.67 0.83 0.68 0.81
SV-HAR IV-SV-HAR 0.64 0.83 0.67 0.82
Cmb-HAR Cmb-IV-HAR 0.63 0.83 0.65 0.82

Note: The values in the table are the loss ratios of the competing HAR model (with implied volatilities) to the benchmark HAR model (without implied
volatilities). Values below 1 indicate that the competing model outperformed its benchmark model. Models: RV-HAR ¼ benchmark model that uses
only Realized Volatilities; FIV-HAR¼ alternative to RV-HAR that contains only implied volatilities; IV-HAR¼ combination of RV-HAR and IV-HAR; CJ-
HAR ¼ HAR specification that decomposes RVD to continuous and jump components; IV-CJ-HAR ¼ CJ-HAR with added implied volatilities; Q-HAR ¼
HAR specification that controls for measurement error; IV-Q-HAR ¼ Q-HAR with added implied volatilities; SV-HAR ¼ HAR specification that de-
composes RVD to positive and negative semi-volatilities; IV-SV-HAR¼ SV-HAR with added implied volatilities; Cmb-HAR¼ a combination of forecasts
for the models without implied volatility; and Cmb-IV-HAR ¼ a combination of forecasts for the models with implied volatility.
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operator, and d the fractional difference parameter, εtþ1 ¼ σtþ1νtþ1, νtþ1eNð0;1Þ, and σ2tþ1 ¼ γ0 þ γ1ε
2
tþ1 þ γ2σ

2
tþ1. In the in-sample

framework, all implied volatility coefficients were significant, but the fractional difference parameter was practically 0 and insignifi-
cant, while the monthly IVM

t was negative. We also run an out-of-sample study by using the same design as the design described in
Section 3.2. Given the mean square error loss function (see Section 3.4), the forecasting accuracy of the ARFIX-GARCH model with
implied volatilities increased by 17% compared to the standard ARFI-GARCHmodel estimated without exogenous variables in the mean
equation. Given the QLIKE loss function, the predictions had similar accuracy.

5. Conclusion

We study the role of implied volatility calculated from options with different maturities in forecasting the future realized volatility on
the highly liquid EUR/USD currency market. We use implied volatility from options with expiration in a day, week, or month. In the
modeling framework, we rely on different extensions of the HAR model of Corsi (2009). Except for the original HAR model, we use
extensions that account for continuous and jump components and the time-varying measurement error of realized volatility and ex-
tensions that separate positive and negative semi-volatilities.

In the in-sample analysis, we compare the relative importance of different IVs, while in the out-of-sample analysis, we study the
overall usefulness of IVs with respect to future levels of volatility. To some extent, our results complement earlier findings, most notably
from Covrig and Low (2003); Busch et al. (2011) in that we find that implied volatility outperforms the historical realized volatility in
in-sample and out-of-sample frameworks. We extend the existing literature in several ways.

First, we provide evidence that even IVs from options with short-term maturity seem to contain non-trivial predictive power. More
specifically, in the case of one-day and one-week volatility forecast horizons, the IVs from options with short-term maturity are sig-
nificant, while the IVs from options with a longer one-month maturity are not significant. Even when modeling one-month-ahead
volatility, all IVs seem to be relevant, not just the IV from the option with a one-month maturity. The general pattern that we
observed is that the inclusion of the implied volatility in the volatility models decreased the size of the coefficients of realized volatility
while the fit of the models increased (up to 29%, 27% and 9% for the one-day, one-week, and one-month-ahead forecasts, respectively).

Second, our results also suggest that utilizing RVs is still beneficial, as the models that include both RVs and IVs show an even greater
fit or forecast improvement, but the improvements achieved by including RVs are much smaller than the improvements achieved by
utilizing IVs.

Third, we show that the role of implied volatility changes concerning the volatility forecast horizon, as with lower forecast horizons,
implied volatilities tend to matter more.
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Fig. 3. Percentage difference of cumulative loss functions. Note: The value on the y-axis is the percentage difference between the cumulative loss
function of the benchmark HAR model and the best performing HAR model with IVs.
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Fourth, our out-of-sample analysis for all time horizons showed that the model confidence set approach resulted in a superior set of
models that consisted solely of the models that included implied volatility. These results were supported by estimated improvements in
forecasting accuracy as measured throughMSE and QLIKE loss functions and regardless of the HARmodel employed or whether we used
unconditional combination volatility forecasts. For one-day-ahead, one-week-ahead, and one-month-ahead forecasts, the improvements
in forecasting accuracy were up to 17.3%, 42.1%, and 22.8%, respectively.
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Overall, our results provide substantial evidence that implied volatility from options with a short-term maturity also has predictive
power with respect to future levels of volatility on the EUR/USD exchange rate market. Furthermore, different specifications of the HAR
models and combination forecasts do not help to improve the predictive power of the volatility models to the same extent as including
implied volatilities as additional regressors. However, RV still seems to contain some valuable information because our model with only
IV (FIV-HAR) does not dominate the other model specifications with both RV and IV and is also excluded from the superior set of models
for one-day and one-month-ahead forecasts according to the QLIKE loss function. Forecast improvements tend to follow highly volatile
periods (i.e., when accurate forecasts matter the most and are pervasive across time) and are stable across time.
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