Detailed Information on Publication Record
2020
Parallel Parameter Synthesis for Multi-affine Hybrid Systems from Hybrid CTL Specifications.
ŠMIJÁKOVÁ, Eva, Samuel PASTVA, David ŠAFRÁNEK and Luboš BRIMBasic information
Original name
Parallel Parameter Synthesis for Multi-affine Hybrid Systems from Hybrid CTL Specifications.
Authors
ŠMIJÁKOVÁ, Eva (703 Slovakia, belonging to the institution), Samuel PASTVA (703 Slovakia, belonging to the institution), David ŠAFRÁNEK (203 Czech Republic, guarantor, belonging to the institution) and Luboš BRIM (203 Czech Republic, belonging to the institution)
Edition
Cham, Computational Methods in Systems Biology. CMSB 2020. Lecture Notes in Computer Science, vol 12314, p. 280-297, 18 pp. 2020
Publisher
Springer, Cham
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
Germany
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
electronic version available online
References:
Impact factor
Impact factor: 0.402 in 2005
RIV identification code
RIV/00216224:14330/20:00114364
Organization unit
Faculty of Informatics
ISBN
978-3-030-60326-7
ISSN
Keywords in English
Hybrid systems; Parameter synthesis; Rectangular abstraction; Semi-symbolic; Hybrid CTL
Tags
Tags
International impact, Reviewed
Změněno: 8/2/2024 10:05, doc. RNDr. David Šafránek, Ph.D.
Abstract
V originále
We consider the parameter synthesis problem for multi-affine hybrid systems and properties specified using a hybrid extension of CTL (HCTL). The goal is to determine the sets of parameter valuations for which the given hybrid system satisfies the desired HCTL property. As our main contribution, we propose a shared-memory parallel algorithm which efficiently computes such parameter valuation sets. We combine a rectangular discretisation of the continuous dynamics with the discrete transitions of the hybrid system to obtain a single over-approximating semi-symbolic transition system. Such system can be then analysed using a fixed-point parameter synthesis algorithm to obtain all satisfying parametrisations. We evaluate the scalability of the method and demonstrate its applicability in a biological case study.
Links
GA18-00178S, research and development project |
| ||
MUNI/A/1018/2018, interní kód MU |
| ||
MUNI/A/1050/2019, interní kód MU |
| ||
MUNI/A/1076/2019, interní kód MU |
|