

ACCELERATING METRIC FILTERING BY IMPROVING BOUNDS ON ESTIMATED DISTANCES

Best Paper
Award
2020

VLADIMIR MIC AND PAVEL ZEZULA
FACULTY OF INFORMATICS, MASARYK UNIVERSITY, BRNO, CZECH REPUBLIC

METRIC FILTERING

Topic

• Let q, o, p are objects in metric space (D, d)

The upper-bound:

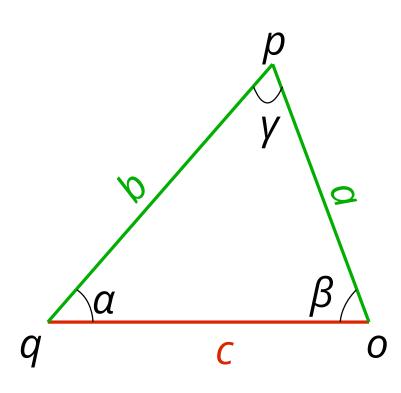
 $d(q,o) \leq d(q,p) + d(o,p)$

The lower-bound:

 $d(q, o) \ge |d(q, p) - d(o, p)|$

Isometric Embedding to Euclidean Space

- The isometric embedding of *q*, *o*, *p* into
 2D Euclidean space is always possible,
 → let's compute angles in the triangle
- Notation:



Tight Bounds on c?

- Two angles out of α , β , γ must be zero, and one 180° to have any of the bounds on c tight
- This practically never happens in contemporary data
- α, β, γ are always (nearly precisely) limited:

$$\Omega_{\min} \leq \alpha, \beta, \gamma \leq \Omega_{\max}$$

We enhance triangle inequalities with information about range of angles Ω_{min} , Ω_{max} in triangles to improve the tightness of the bounds on unknown distances.

If the angles limitation Ω_{\min} , Ω_{\max} holds, then newly derived bounds on c are correct.

Newly Derived Bounds on C

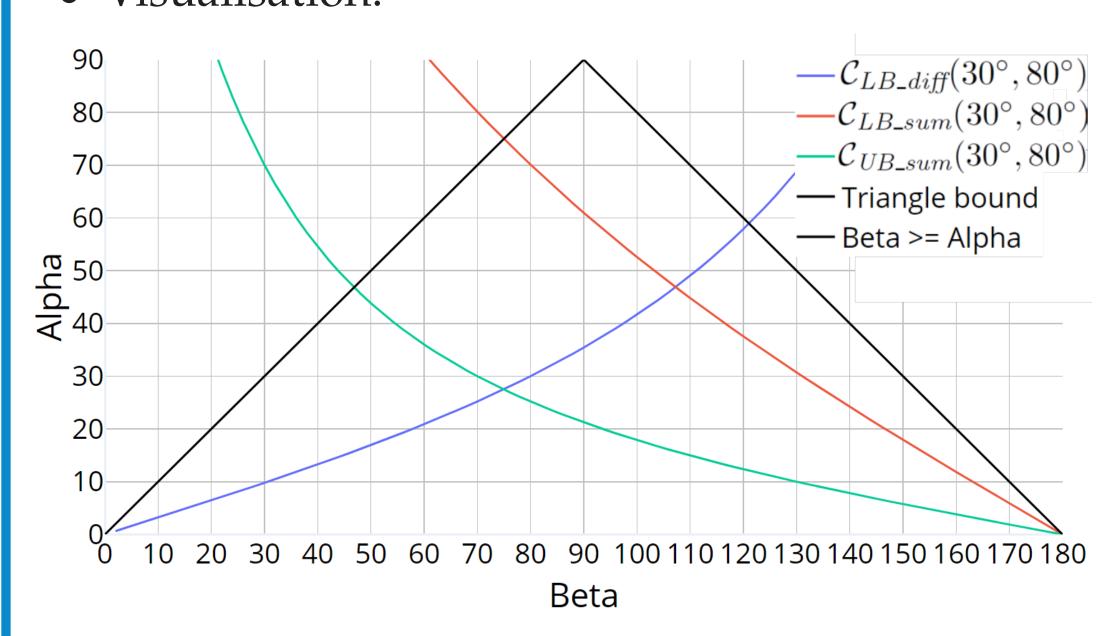
New Bounds on c – Examples

$[\Omega_{min},\Omega_{max}]$	Upper-bound	Lower-bound	(Very new) lower-bound
$[0^{\circ}, 180^{\circ}]$	$c \le (a+b) \cdot 1$	$c \ge a - b \cdot 1$	$c \ge (a+b) \cdot 0$
$[60^{\circ}, 60^{\circ}]$	$c \le (a+b) \cdot 0.5$	indef. exp.	$c \ge (a+b) \cdot 0.5$
[20°, 100°]	$c \le (a+b) \cdot 0.815$	$c \ge a - b \cdot 1.347$	$c \ge (a+b) \cdot 0.174$
$[20^{\circ}, 80^{\circ}]$	$c \le (a+b) \cdot 0.742$	$c \ge a - b \cdot 1.532$	$c \ge (a+b) \cdot 0.174$
$[25^{\circ}, 120^{\circ}]$	$c \le (a+b) \cdot 0.869$	$c \ge a - b \cdot 1.294$	$c \ge (a+b) \cdot 0.216$
$[25^{\circ}, 90^{\circ}]$	$c \le (a+b) \cdot 0.752$	$c \ge a - b \cdot 1.570$	$c \ge (a+b) \cdot 0.216$
$[30^{\circ}, 100^{\circ}]$	$c \le (a+b) \cdot 0.778$	$c \ge a - b \cdot 1.580$	$c \ge (a+b) \cdot 0.259$
$[30^{\circ}, 80^{\circ}]$	$c \le (a+b) \cdot 0.684$	$ c \geq a-b \cdot 1.938$	$c \ge (a+b) \cdot 0.259$

Consequences of Imprecise Angles Limitation Ω_{\min} , Ω_{\max}

- In practice, metric spaces guarantee just atrivial limitation $[\Omega_{\min}, \Omega_{\max}] = [0^{\circ}, 180^{\circ}]$
 - We still can set $[\Omega_{\min}, \Omega_{\max}]$ experimentally
 - Then, we lose the certainty that the bounds on c are correct
 - ullet We define the decomposition of all triangles into classes that correspond to the correctness of new bounds on distance c
 - Each bound on *c* is either 'tight', 'correct but not tight', or 'wrong'
 - 15 classes of triangles exist (Some combinations do not exist)
 - This allows to set $[\Omega_{\min}, \Omega_{\max}]$ to provide extremely precise bounds on c (more precisely: such that they almost do not lead to false negatives and false positives)

• Visualisation:



• All triangles $\triangle a, b, c$ can be depicted as single points:

- x-axis expresses the size of angle β
- *y*-axis expresses the size of angle α
- We assume $\beta \geq \alpha$, and $\alpha + \beta \leq 180^\circ$ without a loss of generality (see the video). Thus focus on a space below black lines
- Coloured curves assume $[\Omega_{\min}, \Omega_{\max}] = [30^{\circ}, 80^{\circ}]$
 - Decomposition of triangles according to the correctness of new bounds on *c*
 - All bounds on *c* are correct iff the point describing a triangle is between colour curves

RESULTS

Visualisation of Real-life Data

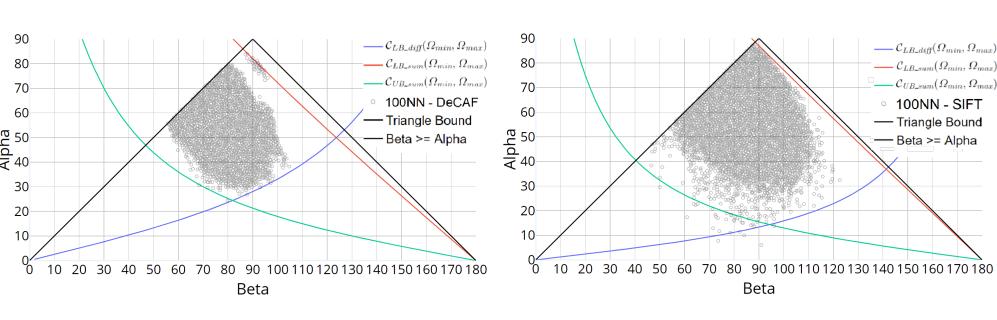
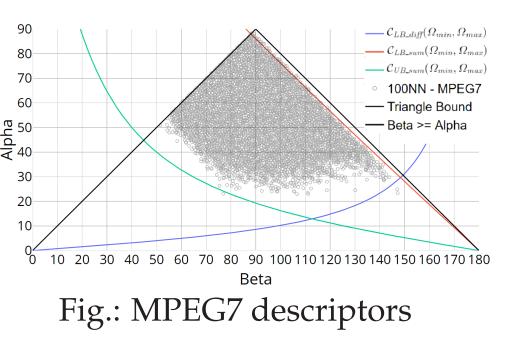


Fig.: DeCAF descriptors Fig.: SIFT descriptors



Black points: triangles sampled from the real life data, with focus on nearest neighbours.

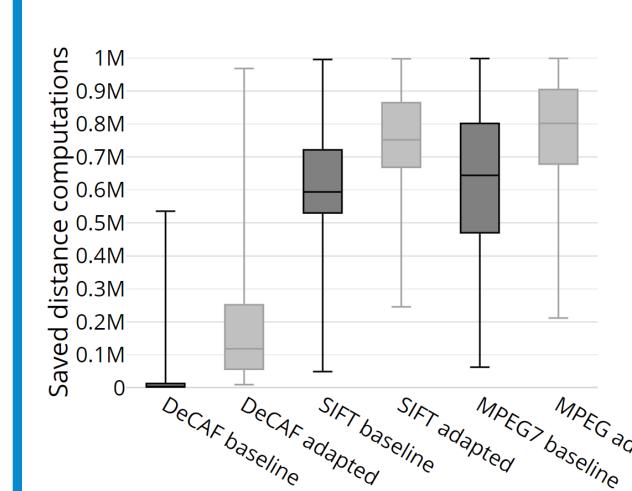
• Coloured curves visualise angles limitation $[\Omega_{min}, \Omega_{max}]$ used in experiments

Derived Bounds & Experiments

Selected angles limitation $[\Omega_{\min}, \Omega_{\max}]$, and new bounds on c

O		
$[\Omega_{\min},\Omega_{\max}]$	$[\Omega_{\min},\Omega_{\max}]$	$[\Omega_{\min},\Omega_{\max}]$
$[28^{\circ}, 90^{\circ}]$	$[8^{\circ}, 86^{\circ}]$	$[30^{\circ}, 80^{\circ}]$
$c \ge 1.66 \cdot b - a $	$c \ge 0.07 \cdot (b+a)$	$c \le 0.68 \cdot (b+a)$
$[12^{\circ}, 84^{\circ}]$	$[3^{\circ}, 88.5^{\circ}]$	$[20^{\circ}, 85^{\circ}]$
$c \ge 1.26 \cdot b - a $	$c \ge 0.03 \cdot (b+a)$	$c \le 0.76 \cdot (b+a)$
$[8^{\circ}, 86^{\circ}]$	$[4^{\circ}, 88^{\circ}]$	$[40^{\circ}, 90^{\circ}]$
$c \ge 1.16 \cdot b - a $	$c \ge 0.04 \cdot (b+a)$	$c \le 0.71 \cdot (b+a)$

Increase of saved distance computations:



Metric filtering with 256 pivots, 1M data, 1000 query objects, 10NN queries.

Box-plots: values over particular query objects

Dark: pure triangle inequalities, light: new bounds

- The evaluation with new bounds is approximate. Nevertheless:
 - 999 out of 1000 answers to 10NN query contain ALL 10 NN in case of all datasets
 - The median query answer size is 10 in case of all datasets

https://disa.fi.muni.cz/~xmic/2020_09_Video_SISAP_Angles