Accelerating Metric Filtering by Improving Bounds on Estimated Distances

Vladimir Mic and Pavel ZeZula
Faculty of Informatics, Masaryk University, Brno, Czech Republic
Best Paper

Metric Filtering

Topic

- Let q, o, p are objects in metric space (D, d)

The upper-bound:
$d(q, o) \leq d(q, p)+d(o, p)$
The lower-bound:
$d(q, o) \geq|d(q, p)-d(o, p)|$
Isometric Embedding to Euclidean Space

- The isometric embedding of q, o, p into 2D Euclidean space is always possible, \rightarrow let's compute angles in the triangle
- Notation:

Tight Bounds on c ?

- Two angles out of α, β, γ must be zero, and one 180° to have any of the bounds on c tight
- This practically never happens in contempo rary data
- α, β, γ are always (nearly precisely) limited:

$$
\Omega_{\min } \leq \alpha, \beta, \gamma \leq \Omega_{\max }
$$

We enhance triangle inequalities with information about range of angles $\Omega_{\text {min }}, \Omega_{\text {max }}$ in triangles to improve the tightness of the bounds on unknown distances.

If the angles limitation $\Omega_{\min }, \Omega_{\max }$ holds, then newly derived bounds on c are correct.

Newly Derived Bounds on c

New Bounds on c-Examples

$\left[\Omega_{\min }, \Omega_{\max }\right]$	Upper-bound	Lower-bound	(Very new) lower-bound
$\left[0^{\circ}, 180^{\circ}\right]$	$c \leq(a+b) \cdot 1$	$c \geq\|a-b\| \cdot 1$	$c \geq(a+b) \cdot 0$
$\left[60^{\circ}, 60^{\circ}\right]$	$c \leq(a+b) \cdot 0.5$	indef. exp.	$c \geq(a+b) \cdot 0.5$
$\left[20^{\circ}, 100^{\circ}\right]$	$c \leq(a+b) \cdot 0.815$	$c \geq\|a-b\| \cdot 1.347$	$c \geq(a+b) \cdot 0.174$
$\left[20^{\circ}, 80^{\circ}\right]$	$c \leq(a+b) \cdot 0.742$	$c \geq\|a-b\| \cdot 1.532$	$c \geq(a+b) \cdot 0.174$
$\left[25^{\circ}, 120^{\circ}\right]$	$c \leq(a+b) \cdot 0.869$	$c \geq\|a-b\| \cdot 1.294$	$c \geq(a+b) \cdot 0.216$
$\left[25^{\circ}, 90^{\circ}\right]$	$c \leq(a+b) \cdot 0.752$	$c \geq\|a-b\| \cdot 1.570$	$c \geq(a+b) \cdot 0.216$
$\left[30^{\circ}, 100^{\circ}\right]$	$c \leq(a+b) \cdot 0.778$	$c \geq\|a-b\| \cdot 1.580$	$c \geq(a+b) \cdot 0.259$
$\left[30^{\circ}, 80^{\circ}\right]$	$c \leq(a+b) \cdot 0.684$	$c \geq\|a-b\| \cdot 1.938$	$c \geq(a+b) \cdot 0.259$

Consequences of Imprecise Angles Limitation $\Omega_{\text {min }}, \Omega_{\text {max }}$

- In practice, metric spaces guarantee just atrivial limitation $\left[\Omega_{\min }, \Omega_{\max }\right]=\left[0^{\circ}, 180^{\circ}\right]$
- We still can set $\left[\Omega_{\min }, \Omega_{\text {max }}\right]$ experimentally
- Then, we lose the certainty that the bounds on c are correct
- We define the decomposition of all triangles into classes that correspond to the correctness of new bounds on distance c
- Each bound on c is either 'tight',' 'correct but not tight', or 'wrong'
- 15 classes of triangles exist (Some combinations do not exist)
- This allows to set $\left[\Omega_{\min }, \Omega_{\mathrm{max}}\right.$] to provide extremely precise bounds on c (more precisely: such that they almost do not lead to false negatives and false positives)

- All triangles $\triangle a, b, c$ can be depicted as single points:
- x-axis expresses the size of angle β
- y-axis expresses the size of angle α
- We assume $\beta \geq \alpha$, and $\alpha+\beta \leq 180^{\circ}$ without a loss of generality (see the video). Thus focus on a space below black lines
- Coloured curves assume
$\left.\Omega_{\text {min }}, \Omega_{\text {max }}\right]=\left[30^{\circ}, 8\right.$
- Decomposition of triangles according to the correctness of new bounds on c
- All bounds on c are correct iff the point describing a triangle is between colour curves

Results
Visualisation of Real-life Data

Fig.: MPEG7 descriptors
sampled from triang ife data, nearest neighbours.

- Coloured curves visualise angles limitation $\left[\Omega_{\min }, \Omega_{\max }\right.$ used in experiments

Derived Bounds \& Experiments

Selected angles limitation $\left[\Omega_{\min }, \Omega_{\max }\right.$], and new bounds on c \begin{tabular}{|l|l|l|}
\hline$\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right]$ \& {$\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right]$} \& {$\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right]$}

\hline$\left[28^{\circ}, 0^{\circ}\right]$

\hline

\hline $\left.28^{\circ}, 90^{\circ}\right]$ \& {$\left[8^{\circ}, 86^{\circ}\right]$} \& $\left.c 30^{\circ}, 80^{\circ}\right]$

\hline$c \geq 1.66 \cdot|b-a|$ \& $c \geq 0.07 \cdot(b+a)$ \& $c \leq 0.68 \cdot(b+a)$

\hline

\hline $12^{\circ}, 84^{\circ}$ \& {$\left[3^{\circ}, 88.5^{\circ}\right.$} \& {$\left[20^{\circ}, 85^{\circ}\right.$}

\hline

\hline$c \geq 1.26 \cdot|b-a|$ \& $c \geq 0.03 \cdot(b+a)$ \& $c \leqq 0.76 \cdot(b+a)$

\hline

\hline$\left[8^{\circ}, 86^{\circ}\right]$ \& {$\left[4^{\circ}, 88^{\circ}\right]$} \& {$\left[40^{\circ}, 90^{\circ}\right]$}

\hline$c>1.16 \cdot|b-a|$ \& $c>0.04 \cdot(b+a)$ \& $c<0.71 \cdot(b+a)$

\hline
\end{tabular}

Increase of saved distance computations:

Metric filtering with 256 pivots, 1M data, 1000 query objects, 10NN queries Box-plots: values over particular
query objects
Bark: pure triangle inequalities, light: new bound

- The evaluation with new bounds is approximate. Nevertheless:
- 999 out of 1000 answers to 10 NN query contain ALL 10 NN in case of all datasets
- The median query answer size is 10 in case of all datasets

