## II U II I <br> C4E

## Accelerating Metric Filtering by Improving Bounds on Estimated Distances

Vladimir Mic and Pavel Zezula<br>\{xmic, zezula\}@fi.muni.cz<br>Masaryk University, Brno, Czech Republic

September 30, 2020

## Summary

■ We enhance the definition of triangle inequalities to define tighter bounds on unknown distances

■ Our approach is applicable for any metric space

- The metric filtering can be incorporated in a huge number of similarity indexes to speed-up the search practically for free

■ A straightforward example is given by the $P M$-tree

## Summary

■ We enhance the definition of triangle inequalities to define tighter bounds on unknown distances

■ Our approach is applicable for any metric space

- The metric filtering can be incorporated in a huge number of similarity indexes to speed-up the search practically for free

■ A straightforward example is given by the $P M$-tree

## Summary

■ We enhance the definition of triangle inequalities to define tighter bounds on unknown distances

■ Our approach is applicable for any metric space

- The metric filtering can be incorporated in a huge number of similarity indexes to speed-up the search practically for free

■ A straightforward example is given by the PM-tree

## The Metric Space Similarity Model

■ Domain of searched objects: $D$
■ Similarity of two objects is expressed by a distance function $d$

- $d: D \times D \mapsto \mathbf{R}_{0}^{+}$
- The bigger the distance $d(x, y)$, the less similar objects $x, y$

■ Similarity model: metric space $(D, d)$
■ $\forall x, y, z \in D$, the distance function $d$ must satisfy:

- $d(x, y) \geq 0$
(non-negativity)
- $d(x, y)=d(y, x)$

■ $d(x, y)=0 \Longleftrightarrow x=y$

- $d(x, y)+d(y, z) \geq d(x, z)$
(symmetry)
(identity)
(triangle inequality)


## The Metric Space Similarity Model

■ Domain of searched objects: $D$
■ Similarity of two objects is expressed by a distance function d

- $d: D \times D \mapsto \mathbf{R}_{0}^{+}$
- The bigger the distance $d(x, y)$, the less similar objects $x, y$

■ Similarity model: metric space $(D, d)$
■ $\forall x, y, z \in D$, the distance function $d$ must satisfy:

- $d(x, y) \geq 0$
(non-negativity)
- $d(x, y)=d(y, x)$

■ $d(x, y)=0 \Longleftrightarrow x=y$ (symmetry)

- $d(x, y)+d(y, z) \geq d(x, z)$ (identity) (triangle inequality)


## The Similarity Search

■ $X \subseteq D$ is a searched dataset

- $q \in D$ is an arbitrary given query object
■ The goal is to efficiently find the most similar objects to $q$ : Ans $(q) \subseteq X$


Fig.: Domain $D$, dataset $X$, query object $q$ and answer set Ans(q)

## Bounds on Unknown Distance

■ Let $q, p, o \in D$ are arbitrary given objects
■ They are going to be the query object $q \in D$, object $o$ from the dataset $X$, and a reference object $p \in D$, called pivot

## Bounds on Unknown Distance

■ Let $q, p, o \in D$ are arbitrary given objects

- They are going to be the query object $q \in D$, object $o$ from the dataset $X$, and a reference object $p \in D$, called pivot

■ Let us assume that distances $d(q, p)$ and $d(o, p)$ are known, and $d(q, o)$ is unknown


## Bounds on Unknown Distance

■ Let $q, p, o \in D$ are arbitrary given objects

- They are going to be the query object $q \in D$, object $o$ from the dataset $X$, and a reference object $p \in D$, called pivot

■ Let us assume that distances $d(q, p)$ and $d(o, p)$ are known, and $d(q, 0)$ is unknown


■ Triangle inequalities define the upper-bound and lower-bound on $d(q, o)$ :

- $d(q, o) \leq d(q, p)+d(o, p)$
- $d(q, o) \geq|d(q, p)-d(o, p)|$


## Metric Filtering



- The upper-bound:
$d(q, o) \leq d(q, p)+d(o, p)$

■ The lower-bound: $d(q, o) \geq|d(q, p)-d(o, p)|$

- Let us assume that we are interested just in objects within distance $r$
- If the upper-bound is smaller than $r$, $o$ is guaranteed to be in the answer

■ If the lower-bound is bigger than $r$,
o cannot be in the answer

## The Crucial Feature of the Bounds

## The Key Question

## How tight are these bounds in practice?

## The Answer

The tightness of these bounds strongly suffers from the dimensionality curse

- the extreme case is the equilateral triangle: the lower-bound is 0 , thus useless, the upper-bound is twice as big as $d(q, 0)$


## Our Contribution

■ We enhance triangle inequalities with additional information to improve the tightness of the bounds on unknown distances
■ Moreover, we define a new lower-bound on unknown distances

## The Crucial Feature of the Bounds

## The Key Question

## How tight are these bounds in practice?

## The Answer

The tightness of these bounds strongly suffers from the dimensionality curse

- the extreme case is the equilateral triangle: the lower-bound is 0 , thus useless, the upper-bound is twice as big as $d(q, o)$


## Our Contribution

■ We enhance triangle inequalities with additional information to improve the tightness of the bounds on unknown distances
■ Moreover, we define a new lower-bound on unknown distances

## The Crucial Feature of the Bounds

## The Key Question

## How tight are these bounds in practice?

## The Answer

The tightness of these bounds strongly suffers from the dimensionality curse

- the extreme case is the equilateral triangle: the lower-bound is 0 , thus useless, the upper-bound is twice as big as $d(q, 0)$


## Our Contribution

- We enhance triangle inequalities with additional information to improve the tightness of the bounds on unknown distances
■ Moreover, we define a new lower-bound on unknown distances


## Embedding into the Euclidean Space

■ The rule of triangle inequality allows to isometrically embed any three objects $q, o, p \in D$ into 2D Euclidean space

■ Here, we can use the cosine rule to evaluate angles in the triangle with sides of lengths $d(q, o), d(q, p), d(o, p)$

■ We simplify the notation to have a triangle with sides $\triangle a, b, c$ and the corresponding angles $\alpha, \beta, \gamma$

■ $C$ is the unknown distance
■ We focus on a non-trivial case $a \neq 0, b \neq 0, c \neq 0$


## Embedding into the Euclidean Space

■ The rule of triangle inequality allows to isometrically embed any three objects $q, o, p \in D$ into 2D Euclidean space

■ Here, we can use the cosine rule to evaluate angles in the triangle with sides of lengths $d(q, o), d(q, p), d(o, p)$

■ We simplify the notation to have a triangle with sides $\triangle a, b, c$ and the corresponding angles $\alpha, \beta, \gamma$

■ $C$ is the unknown distance
■ We focus on a non-trivial case $a \neq 0, b \neq 0, c \neq 0$


## Embedding into the Euclidean Space

■ The rule of triangle inequality allows to isometrically embed any three objects $q, o, p \in D$ into 2D Euclidean space

■ Here, we can use the cosine rule to evaluate angles in the triangle with sides of lengths $d(q, o), d(q, p), d(o, p)$

■ We simplify the notation to have a triangle with sides $\triangle a, b, c$ and the corresponding angles $\alpha, \beta, \gamma$

- $c$ is the unknown distance
- We focus on a non-trivial case $a \neq 0, b \neq 0, c \neq 0$



## Tight Bounds?

■ When are the bounds on c tight?

■ The tight upper-bound on $c$ :

$$
\begin{aligned}
& c=b+a \\
& a=0^{\circ} \quad b \quad y=180^{\circ} \quad a \quad \\
& \underset{q}{+} \quad \\
& c \quad p \\
& +0^{+}
\end{aligned}
$$



- The tight lower-bound on $c$ :

$$
c=|b-a|
$$


or a symmetric case with $\alpha=180^{\circ}, \beta=\gamma=0^{\circ}$

## Tight Bounds?

■ When are the bounds on c tight?

■ The tight upper-bound on $c$ :

$$
\begin{aligned}
& c=b+a \\
& a=0^{\circ} \quad b \quad y=180^{\circ} \quad a \quad \\
& \underset{q}{+} \quad \\
& c \quad p \\
& +0^{+}
\end{aligned}
$$



■ The tight lower-bound on $c$ :

$$
c=|b-a|
$$


or a symmetric case with $\alpha=180^{\circ}, \beta=\gamma=0^{\circ}$

## Tight Bounds?

■ When are the bounds on c tight?

■ The tight upper-bound on $c$ :

$$
\begin{aligned}
& c=b+a \\
& a=0^{\circ} \quad b \quad y=180^{\circ} \quad a \quad \\
& \underset{q}{+} \quad \\
& c \quad p \\
& +0^{+}
\end{aligned}
$$



■ The tight lower-bound on $c$ :

$$
c=|b-a|
$$


or a symmetric case with $\alpha=180^{\circ}, \beta=\gamma=0^{\circ}$

## Tight Bounds?

■ When are the bounds on c tight?

■ The tight upper-bound on $c$ :

$$
\begin{aligned}
& c=b+a \\
& a=0^{\circ} \quad b \\
& q
\end{aligned} \quad y=180^{\circ} \quad a \quad \beta_{+}=0^{\circ} .
$$

■ The tight lower-bound on $c$ :

$$
c=|b-a|
$$


or a symmetric case with $\alpha=180^{\circ}, \beta=\gamma=0^{\circ}$

## The Answer

There must be two zero angles and the straight angle in a triangle $\triangle a, b, c$ to make any of these bounds on $c$ tight

## Tight Bounds?

There must be two zero angles and a straight angle in the triangle $\triangle a, b, c$ to make any of these bounds on ctight

## The Question

How often this happens?

## The Answer

Basically, never, in case of high dimensional data

## Tight Bounds?

There must be two zero angles and a straight angle in the triangle $\triangle a, b, c$ to make any of these bounds on c tight

## The Question

How often this happens?
The Answer
Basically, never, in case of high dimensional data

## Example

■ Example of angles $\alpha, \beta, \gamma$ in triangles $\triangle a, b, c$ (space of image visual descriptors ${ }^{1}$ )


■ Notice the $\log$ scale of $y$-axis (1 million angles in triangles $\triangle a, b, c$ are sampled)
■ All angles $\alpha, \beta, \gamma$ are in range [ $21^{\circ}, 91^{\circ}$ ]

- So, why we admit the whole range of angles $\left[0^{\circ}, 180^{\circ}\right]$ do define bounds on $c$ ?

[^0]
## Example

■ Example of angles $\alpha, \beta, \gamma$ in triangles $\triangle a, b, c$ (space of image visual descriptors ${ }^{1}$ )


■ Notice the log scale of $y$-axis (1 million angles in triangles $\triangle a, b, c$ are sampled)

- All angles $\alpha, \beta, \gamma$ are in range [ $21^{\circ}, 91^{\circ}$ ]
- So, why we admit the whole range of angles $\left[0^{\circ}, 180^{\circ}\right]$ do define bounds on $c$ ?

[^1]
## Core of the Article

■ The upper-bound is:

$$
\begin{gather*}
c \leq a+b \\
c=(a+b) \cdot \frac{1-\cos \gamma}{\cos \alpha+\cos \beta}
\end{gather*}
$$

## Core of the Article

■ The upper-bound is:

$$
\begin{gather*}
c \leq a+b \\
c=(a+b) \cdot \frac{1-\cos \gamma}{\cos \alpha+\cos \beta}
\end{gather*}
$$

## Core of the Article

■ The upper-bound is:
■ The lower-bound is:

$$
c \leq a+b \quad c \geq|b-a|
$$

... and we prove equalities:

$$
\begin{equation*}
c=(a+b) \cdot \frac{1-\cos \gamma}{\cos \alpha+\cos \beta} \quad \text { (1) } \quad c=|b-a| \cdot \frac{1+\cos \gamma}{|\cos \alpha-\cos \beta|} \tag{1}
\end{equation*}
$$

## Core of the Article

■ The upper-bound is:
■ The lower-bound is:

$$
c \leq a+b \quad c \geq|b-a|
$$

... and we prove equalities:

$$
\begin{equation*}
c=(a+b) \cdot \frac{1-\cos \gamma}{\cos \alpha+\cos \beta} \quad \text { (1) } \quad c=|b-a| \cdot \frac{1+\cos \gamma}{|\cos \alpha-\cos \beta|} \tag{1}
\end{equation*}
$$

## Core of the Article

■ The upper-bound is:
■ The lower-bound is:

$$
c \leq a+b \quad c \geq|b-a|
$$

... and we prove equalities:

$$
\begin{equation*}
c=(a+b) \cdot \frac{1-\cos \gamma}{\cos \alpha+\cos \beta} \quad \text { (1) } \quad c=|b-a| \cdot \frac{1+\cos \gamma}{|\cos \alpha-\cos \beta|} \tag{1}
\end{equation*}
$$

Let us assume values $\Omega_{\min }, \Omega_{\max }$ such that for all triangles $\triangle a, b, c$ in the metric space:

$$
\Omega_{\min } \leq \alpha, \beta, \gamma \leq \Omega_{\max }
$$

■ we prove that values $\Omega_{\min }$, $\Omega_{\max }$ limit the values of fractions in Eq. 1 and Eq. 2

## Core of the Article

■ The upper-bound is:
■ The lower-bound is:

$$
c \leq a+b \quad c \geq|b-a|
$$

... and we prove equalities:

$$
\begin{equation*}
c=(a+b) \cdot \frac{1-\cos \gamma}{\cos \alpha+\cos \beta} \quad \text { (1) } \quad c=|b-a| \cdot \frac{1+\cos \gamma}{|\cos \alpha-\cos \beta|} \tag{1}
\end{equation*}
$$

Let us assume values $\Omega_{\text {min }}, \Omega_{\max }$ such that for all triangles $\triangle a, b, c$ in the metric space:

$$
\Omega_{\min } \leq \alpha, \beta, \gamma \leq \Omega_{\max }
$$

■ we prove that values $\Omega_{\min }, \Omega_{\max }$ Limit the values of fractions in Eq. 1 and Eq. 2

## Core of the Article

■ The upper-bound is:
■ The lower-bound is:

$$
c \leq a+b \quad c \geq|b-a|
$$

... and we prove equalities:

$$
\begin{equation*}
c=(a+b) \cdot \frac{1-\cos \gamma}{\cos \alpha+\cos \beta} \quad \text { (1) } \quad c=|b-a| \cdot \frac{1+\cos \gamma}{|\cos \alpha-\cos \beta|} \tag{1}
\end{equation*}
$$

Let us assume values $\Omega_{\text {min }}, \Omega_{\max }$ such that for all triangles $\triangle a, b, c$ in the metric space:

$$
\Omega_{\min } \leq \alpha, \beta, \gamma \leq \Omega_{\max }
$$

- we prove that values $\Omega_{\min }$, $\Omega_{\text {max }}$ limit the values of fractions in Eq. 1 and Eq. 2


## Core of the Article

■ The upper-bound is:
■ The lower-bound is:

$$
c \leq a+b \quad c \geq|b-a|
$$

... and we prove equalities:

$$
\begin{equation*}
c=(a+b) \cdot \frac{1-\cos \gamma}{\cos \alpha+\cos \beta} \quad \text { (1) } \quad c=|b-a| \cdot \frac{1+\cos \gamma}{|\cos \alpha-\cos \beta|} \tag{1}
\end{equation*}
$$

Let us assume values $\Omega_{\min }, \Omega_{\max }$ such that for all triangles $\triangle a, b, c$ in the metric space:

$$
\Omega_{\min } \leq \alpha, \beta, \gamma \leq \Omega_{\max }
$$

■ we prove that values $\Omega_{\text {min }}, \Omega_{\max }$ limit the values of fractions in Eq. 1 and Eq. 2

- Notice that $\Omega_{\min }$ and $\Omega_{\max }$ always exist, as trivially $\Omega_{\min }=0^{\circ}$ and $\Omega_{\max }=180^{\circ}$
$■ \Omega_{\text {min }}$ and $\Omega_{\max }$ are meaningful if and only if $0^{\circ} \leq \Omega_{\min } \leq 60^{\circ} \leq \Omega_{\max } \leq 180^{\circ}$


## Core of the Article

■ The upper-bound is:
■ The lower-bound is:

$$
c \leq a+b \quad c \geq|b-a|
$$

... and we prove equalities:

$$
\begin{equation*}
c=(a+b) \cdot \frac{1-\cos \gamma}{\cos \alpha+\cos \beta} \quad \text { (1) } \quad c=|b-a| \cdot \frac{1+\cos \gamma}{|\cos \alpha-\cos \beta|} \tag{1}
\end{equation*}
$$

Let us assume values $\Omega_{\min }, \Omega_{\max }$ such that for all triangles $\triangle a, b, c$ in the metric space:

$$
\Omega_{\min } \leq \alpha, \beta, \gamma \leq \Omega_{\max }
$$

■ we prove that values $\Omega_{\min }$, $\Omega_{\max }$ limit the values of fractions in Eq. 1 and Eq. 2

- Notice that $\Omega_{\min }$ and $\Omega_{\max }$ always exist, as trivially $\Omega_{\min }=0^{\circ}$ and $\Omega_{\max }=180^{\circ}$
$■ \Omega_{\text {min }}$ and $\Omega_{\text {max }}$ are meaningful if and only if $0^{\circ} \leq \Omega_{\min } \leq 60^{\circ} \leq \Omega_{\max } \leq 180^{\circ}$


## New Bounds on $c$

$$
\begin{equation*}
c=(a+b) \cdot \frac{1-\cos \gamma}{\cos \alpha+\cos \beta} \tag{1}
\end{equation*}
$$

Let us denote:
■ $\mathcal{C}_{\mathrm{LB}_{-} \text {sum }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ the minimum value of fraction in Equation 1

- it defines the lower-bound on $c$ based on the sum of $a$ and $b$, since

$$
c=(a+b) \cdot \frac{1-\cos \gamma}{\cos \alpha+\cos \beta} \geq(a+b) \cdot \mathcal{C}_{\mathrm{LB} \_ \text {sum }}\left(\Omega_{\min }, \Omega_{\max }\right)
$$

## New Bounds on $c$

$$
\begin{equation*}
c=(a+b) \cdot \frac{1-\cos \gamma}{\cos \alpha+\cos \beta} \tag{1}
\end{equation*}
$$

Let us denote:

- $\mathcal{C}_{\mathrm{LB}}{ }_{\text {sum }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ the minimum value of fraction in Equation 1
- it defines the lower-bound on $c$ based on the sum of $a$ and $b$, since

$$
c=(a+b) \cdot \frac{1-\cos \gamma}{\cos \alpha+\cos \beta} \geq(a+b) \cdot \mathcal{C}_{\text {LB_sum }}\left(\Omega_{\min }, \Omega_{\max }\right)
$$

- $\mathcal{C}_{\text {UB_sum }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ the maximum value of fraction in Equation 1
- it defines the upper-bound on $c$ based on the sum of $a$ and $b$, since

$$
c=(a+b) \cdot \frac{1-\cos \gamma}{\cos \alpha+\cos \beta} \leq(a+b) \cdot \mathcal{C}_{\mathrm{UB}_{-} \operatorname{sum}}\left(\Omega_{\min }, \Omega_{\max }\right)
$$

## New Bounds on $c$

$$
\begin{equation*}
c=|b-a| \cdot \frac{1+\cos \gamma}{|\cos \alpha-\cos \beta|} \tag{2}
\end{equation*}
$$

## New Bounds on $c$

$$
\begin{equation*}
c=|b-a| \cdot \frac{1+\cos \gamma}{|\cos \alpha-\cos \beta|} \tag{2}
\end{equation*}
$$

Let us denote:

- $\mathcal{C}_{\text {LB_diff }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ the minimum value of fraction in Equation 2
- it defines the lower-bound on $c$ based on the difference of $a$ and $b$, since

$$
c=|b-a| \cdot \frac{1+\cos \gamma}{\cos \alpha-\cos \beta} \geq|b-a| \cdot \mathcal{C}_{\mathrm{LB} \_ \text {diff }}\left(\Omega_{\min }, \Omega_{\max }\right)
$$

- $\mathcal{C}_{\text {UB_diff }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ the maximum value of fraction in Equation 2
- it defines the upper-bound on $c$ based on the difference of $a$ and $b$, since

$$
c=|b-a| \cdot \frac{1+\cos \gamma}{\cos \alpha-\cos \beta} \leq|b-a| \cdot \mathcal{C}_{\mathrm{UB}} \text { diff }\left(\Omega_{\min }, \Omega_{\max }\right)
$$

## Four Bounds on $c$ ?

■ We provide algorithms to evaluate all coefficients:

- $\mathcal{C}_{\mathrm{LB} \text { sum }}\left(\Omega_{\min }, \Omega_{\max }\right)$
- $\mathcal{C}_{\text {UB_sum }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$
- $\mathcal{C}_{\text {LB_diff }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$
- $\mathcal{C}_{\text {UB_diff }}\left(\Omega_{\min }, \Omega_{\max }\right)$
$\ldots$ for any range of permitted angles $\Omega_{\text {min }}, \Omega_{\text {max }}$
■ Just $\mathcal{C}_{\text {UB_diff }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ is infinity for all meaningful ranges $\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right]$
- thus, $\mathcal{C}_{\text {UB_diff }}\left(\Omega_{\min }, \Omega_{\max }\right)$ provides just a trivial upper-bound infinity on $c$, for all meaningful ranges [ $\Omega_{\text {min }}, \Omega_{\text {max }}$ ]
- ... it is easy to prove that no other upper-bound on c can be defined using angles limitation $\left[\Omega_{\min }, \Omega_{\max }\right]$ and a difference of b and a . So we are correct.


## New Bounds on $c$ - Overview

## Our Theoretical Contribution

We define two lower-bounds and an upper-bound on a distance $c$ in a triangle $\triangle a, b, c$, that exploit

- the range of permitted angles $\left[\Omega_{\min }, \Omega_{\max }\right]$ : $\Omega_{\min } \leq \alpha, \beta, \gamma \leq \Omega_{\max }$

■ distances $a$ and $b$ (their sum and diff, respectively)

| $\left[\Omega_{\min }, \Omega_{\max }\right]$ | Upper-bound on $c$ | Lower-bound on $c$ | Lower-bound on $c$ |
| :---: | :---: | :---: | :---: |
| $\left[0^{\circ}, 180^{\circ}\right]$ | $c \leq(a+b) \cdot 1$ | $c \geq\|a-b\| \cdot 1$ | $c \geq(a+b) \cdot 0$ |
| $\left[60^{\circ}, 60^{\circ}\right]$ | $c \leq(a+b) \cdot 0.5$ | undefined $^{2}$ | $c \geq(a+b) \cdot 0.5$ |

Table: Trivial examples of bounds on $c$ for given ranges of angles $\Omega_{\text {min }}, \Omega_{\text {max }}$

[^2]
## New Bounds on $c$ - Overview

## Our Theoretical Contribution

We define two lower-bounds and an upper-bound on a distance $c$ in a triangle $\triangle a, b, c$, that exploit

- the range of permitted angles $\left[\Omega_{\min }, \Omega_{\max }\right]$ : $\Omega_{\min } \leq \alpha, \beta, \gamma \leq \Omega_{\max }$

■ distances $a$ and $b$ (their sum and diff, respectively)

| $\left[\Omega_{\min }, \Omega_{\text {max }}\right]$ | Upper-bound on $c$ | Lower-bound on $c$ | Lower-bound on $c$ |
| :---: | :---: | :---: | :---: |
| $\left[0^{\circ}, 180^{\circ}\right]$ | $c \leq(a+b) \cdot 1$ | $c \geq\|a-b\| \cdot 1$ | $c \geq(a+b) \cdot 0$ |
| $\left[60^{\circ}, 60^{\circ}\right]$ | $c \leq(a+b) \cdot 0.5$ | undefined $^{2}$ | $c \geq(a+b) \cdot 0.5$ |

Table: Trivial examples of bounds on $c$ for given ranges of angles $\Omega_{\text {min }}, \Omega_{\text {max }}$

[^3]
## New Bounds on $c$ - Overview

## Our Theoretical Contribution

We define two lower-bounds and an upper-bound on a distance $c$ in a triangle $\triangle a, b, c$, that exploit

- the range of permitted angles $\left[\Omega_{\min }, \Omega_{\max }\right]$ : $\Omega_{\min } \leq \alpha, \beta, \gamma \leq \Omega_{\max }$

■ distances $a$ and $b$ (their sum and diff, respectively)

| $\left[\Omega_{\min }, \Omega_{\max }\right]$ | Upper-bound on $c$ | Lower-bound on $c$ | Lower-bound on $c$ |
| :---: | :---: | :---: | :---: |
| $\left[0^{\circ}, 180^{\circ}\right]$ | $c \leq(a+b) \cdot 1$ | $c \geq\|a-b\| \cdot 1$ | $c \geq(a+b) \cdot 0$ |
| $\left[60^{\circ}, 60^{\circ}\right]$ | $c \leq(a+b) \cdot 0.5$ | undefined $^{2}$ | $c \geq(a+b) \cdot 0.5$ |

Table: Trivial examples of bounds on $c$ for given ranges of angles $\Omega_{\text {min }}, \Omega_{\text {max }}$

[^4]
## New Bounds on $c$ - Overview

## Our Theoretical Contribution

We define two lower-bounds and an upper-bound on a distance $c$ in a triangle $\triangle a, b, c$, that exploit

- the range of permitted angles $\left[\Omega_{\min }, \Omega_{\max }\right]$ : $\Omega_{\min } \leq \alpha, \beta, \gamma \leq \Omega_{\max }$

■ distances $a$ and $b$ (their sum and diff, respectively)

| $\left[\Omega_{\min }, \Omega_{\max }\right]$ | Upper-bound on $c$ | Lower-bound on $c$ | Lower-bound on $c$ |
| :---: | :---: | :---: | :---: |
| $\left[0^{\circ}, 180^{\circ}\right]$ | $c \leq(a+b) \cdot 1$ | $c \geq\|a-b\| \cdot 1$ | $c \geq(a+b) \cdot 0$ |
| $\left[60^{\circ}, 60^{\circ}\right]$ | $c \leq(a+b) \cdot 0.5$ | undefined $^{2}$ | $c \geq(a+b) \cdot 0.5$ |

Table: Trivial examples of bounds on $c$ for given ranges of angles $\Omega_{\text {min }}, \Omega_{\text {max }}$

[^5]
## New Bounds on $c$ - Examples

■ The original upper-bound:
$c \leq a+b$

- The original lower-bound:
$c \geq|a-b|$

| $\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right]$ | Upper-bound on $c$ | Lower-bound on $c$ | Lower-bound on $c$ |
| :---: | :---: | :---: | :---: |
| $\left[20^{\circ}, 100^{\circ}\right]$ | $c \leq(a+b) \cdot 0.815$ | $c \geq\|a-b\| \cdot 1.347$ | $c \geq(a+b) \cdot 0.174$ |
| $\left[20^{\circ}, 80^{\circ}\right]$ | $c \leq(a+b) \cdot 0.742$ | $c \geq\|a-b\| \cdot 1.532$ | $c \geq(a+b) \cdot 0.174$ |
| $\left[25^{\circ}, 120^{\circ}\right]$ | $c \leq(a+b) \cdot 0.869$ | $c \geq\|a-b\| \cdot 1.294$ | $c \geq(a+b) \cdot 0.216$ |
| $\left[25^{\circ}, 90^{\circ}\right]$ | $c \leq(a+b) \cdot 0.752$ | $c \geq\|a-b\| \cdot 1.570$ | $c \geq(a+b) \cdot 0.216$ |
| $\left[30^{\circ}, 100^{\circ}\right]$ | $c \leq(a+b) \cdot 0.778$ | $c \geq\|a-b\| \cdot 1.580$ | $c \geq(a+b) \cdot 0.259$ |
| $\left[30^{\circ}, 80^{\circ}\right]$ | $c \leq(a+b) \cdot 0.684$ | $c \geq\|a-b\| \cdot 1.938$ | $c \geq(a+b) \cdot 0.259$ |

Table: Non-trivial examples of bounds on $c$ for given ranges of angles $\Omega_{\text {min }}, \Omega_{\text {max }}$

## New Bounds on $c$ - Examples

■ The original upper-bound:
$c \leq a+b$

- The original lower-bound:
$c \geq|a-b|$

| $\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right]$ | Upper-bound on $c$ | Lower-bound on $c$ | Lower-bound on $c$ |
| :---: | :---: | :---: | :---: |
| $\left[20^{\circ}, 100^{\circ}\right]$ | $c \leq(a+b) \cdot 0.815$ | $c \geq\|a-b\| \cdot 1.347$ | $c \geq(a+b) \cdot 0.174$ |
| $\left[20^{\circ}, 80^{\circ}\right]$ | $c \leq(a+b) \cdot 0.742$ | $c \geq\|a-b\| \cdot 1.532$ | $c \geq(a+b) \cdot 0.174$ |
| $\left[25^{\circ}, 120^{\circ}\right]$ | $c \leq(a+b) \cdot 0.869$ | $c \geq\|a-b\| \cdot 1.294$ | $c \geq(a+b) \cdot 0.216$ |
| $\left[25^{\circ}, 90^{\circ}\right]$ | $c \leq(a+b) \cdot 0.752$ | $c \geq\|a-b\| \cdot 1.570$ | $c \geq(a+b) \cdot 0.216$ |
| $\left[30^{\circ}, 100^{\circ}\right]$ | $c \leq(a+b) \cdot 0.778$ | $c \geq\|a-b\| \cdot 1.580$ | $c \geq(a+b) \cdot 0.259$ |
| $\left[30^{\circ}, 80^{\circ}\right]$ | $c \leq(a+b) \cdot 0.684$ | $c \geq\|a-b\| \cdot 1.938$ | $c \geq(a+b) \cdot 0.259$ |

Table: Non-trivial examples of bounds on $c$ for given ranges of angles $\Omega_{\text {min }}, \Omega_{\text {max }}$

## How to Set Angles Limitation

■ In practice, metric spaces guarantee just a trivial limitation $\left[\Omega_{\min }, \Omega_{\max }\right]=\left[0^{\circ}, 180^{\circ}\right]$
■ We still can set $\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right]$ experimentally
■ Then, we lose the certainty that the bounds on $c$ are correct

## How to Set Angles Limitation

■ In practice, metric spaces guarantee just a trivial Limitation $\left[\Omega_{\min }, \Omega_{\max }\right]=\left[0^{\circ}, 180^{\circ}\right]$
■ We still can set $\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right]$ experimentally

- Then, we lose the certainty that the bounds on $c$ are correct


## How to Set Angles Limitation

■ In practice, metric spaces guarantee just a trivial Limitation $\left[\Omega_{\min }, \Omega_{\max }\right]=\left[0^{\circ}, 180^{\circ}\right]$

- We still can set $\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right.$ ] experimentally
- Then, we lose the certainty that the bounds on $c$ are correct

■ On the consequences of wrong angles limitation $\left[\Omega_{\min }, \Omega_{\max }\right]$ :

1. We prove and discuss that each of new three bounds on $c$ can be correct even in a triangle $\triangle a, b, c$ where angles $\alpha, \beta, \gamma$ violate the angles limitation $\left[\Omega_{\min }, \Omega_{\text {max }}\right.$ ]
2. Moreover, we prove that all three bounds on $c$ can be correct at the same time in a triangle $\triangle a, b, c$ where angles $\alpha, \beta, \gamma$ violate the angles limitation $\left[\Omega_{\min }, \Omega_{\text {max }}\right.$ ]

## How to Set Angles Limitation

■ In practice, metric spaces guarantee just a trivial Limitation $\left[\Omega_{\min }, \Omega_{\max }\right]=\left[0^{\circ}, 180^{\circ}\right]$

- We still can set $\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right.$ ] experimentally
- Then, we lose the certainty that the bounds on $c$ are correct

■ On the consequences of wrong angles limitation $\left[\Omega_{\min }, \Omega_{\max }\right]$ :

1. We prove and discuss that each of new three bounds on $c$ can be correct even in a triangle $\triangle a, b, c$ where angles $\alpha, \beta, \gamma$ violate the angles limitation $\left[\Omega_{\min }, \Omega_{\text {max }}\right.$ ]
2. Moreover, we prove that all three bounds on $c$ can be correct at the same time in a triangle $\triangle a, b, c$ where angles $\alpha, \beta, \gamma$ violate the angles limitation $\left[\Omega_{\min }, \Omega_{\text {max }}\right.$ ]

## When are the Bounds on c Correct?

■ So, we derive equations - one for each of three new bounds on $c$ - to define

- triangles for which a bound on $c$ is wrong,
- correct, and
- tight,
respectively. (We provide them just in the article.)

[^6]
## When are the Bounds on c Correct?

■ So, we derive equations - one for each of three new bounds on $c$ - to define

- triangles for which a bound on $c$ is wrong,
- correct, and

■ tight,
respectively. (We provide them just in the article.)
■ The correctness of the new bounds on $\boldsymbol{c}$ is given just by its angles $\alpha$ and $\beta^{3}$

- This enables us to clearly visualise the classes of triangles

[^7]
## When are the Bounds on c Correct?

■ So, we derive equations - one for each of three new bounds on $c$ - to define

- triangles for which a bound on c is wrong,
- correct, and

■ tight,
respectively. (We provide them just in the article.)
■ The correctness of the new bounds on $\boldsymbol{c}$ is given just by its angles $\alpha$ and $\beta^{3}$

- This enables us to clearly visualise the classes of triangles

■ From now on, we assume $b \geq a$ in a triangle $\triangle a, b, c$, without a loss of generality for the similarity search, and for the sake of simplicity:

■ If $b<a$, then swapping of the notation of objects $q$ and $o$ swaps the distances $b$ and $a$, and preserves the distance $c$ thanks to the symmetry $d(q, o)=d(o, q)$. Thus, we can assume $b \geq a$ as far as we focus on an isolated triangle.


[^8]
## When are the Bounds on c Correct?

■ We introduce plots like this one to depict all possible triangles $\triangle a, b, c$ as single points:

■ $x$-axis expresses the size of angle $\beta$

- $y$-axis expresses the size of angle $\alpha$

■ Since $\beta \geq \alpha$, and $\alpha+\beta \leq 180^{\circ}$, we are interested just in points bellow the solid black lines (...so please focus on the triangular shape in the plot)


## When are the Bounds on c Correct?

■ We introduce plots like this one to depict all possible triangles $\triangle a, b, c$ as single points:

■ $x$-axis expresses the size of angle $\beta$
■ $y$-axis expresses the size of angle $\alpha$
■ Since $\beta \geq \alpha$, and $\alpha+\beta \leq 180^{\circ}$, we are interested just in points bellow the solid black lines (...so please focus on the triangular shape in the plot)


## When are the Bounds on c Correct?



- Let $\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right]$ is a given. For example: $\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right]=\left[30^{\circ}, 80^{\circ}\right]$
- We define blue, green, and orange functions, which are depicted for $\left[\Omega_{\text {min }}, \Omega_{\max }\right]=\left[30^{\circ}, 80^{\circ}\right]$ in the figure
- If a triangle $\triangle a, b, c$ is represented by a point above or on a blue curve, then the lower-bound $c \geq|b-a| \cdot \mathcal{C}_{\text {LB_diff }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ is correct
■ If the triangle is depicted below a blue curve, then this lower-bound is wrong
- Iff the triangle is depicted on a blue curve, then this lower-bound is tight


## When are the Bounds on c Correct?



- Example for $\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right]=\left[30^{\circ}, 80^{\circ}\right]$
- If a triangle $\triangle a, b, c$ is represented by a point above or on a green curve, then the upper-bound $c \leq(a+b) \cdot \mathcal{C}_{\mathrm{UB}}$ _sum $\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ is correct
■ If the triangle is depicted below a green curve, then this upper-bound is wrong
- Iff the triangle is depicted on a green curve, then this upper-bound is tight


## When are the Bounds on c Correct?



- Example for $\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right]=\left[30^{\circ}, 80^{\circ}\right]$
- If a triangle $\triangle a, b, c$ is represented by a point below(!) or on an orange curve, then the lower-bound $c \geq(a+b) \cdot \mathcal{C}_{\text {LB_sum }}\left(\Omega_{\min }, \Omega_{\max }\right)$ is correct
- If the triangle is depicted above a orange curve, then this lower-bound is wrong
- Iff the triangle is depicted on a orange curve, then this lower-bound is tight


## Conclusion on Setting Angles Limitation



- We need to set angles limitation $\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right.$ ] to tightly embrace the points representing triangles $\triangle a, b, c$ drawn from the metric space by blue, green, and orange curves in a figure made for $\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right]^{4}$

[^9]
## Visualisations of Real Life Data



Fig.: DeCAF, $\left[\Omega_{\min }, \Omega_{\max }\right]=\left[25^{\circ}, 80^{\circ}\right]$


Fig.: SIFT, $\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right]=\left[20^{\circ}, 90^{\circ}\right]$


Fig.: MPEG7, $\left[\Omega_{\min }, \Omega_{\max }\right]=\left[20^{\circ}, 110^{\circ}\right]$

- Purple points represent randomly selected triangles $\triangle a, b, c$
- It is possible to set $\left[\Omega_{\min }, \Omega_{\max }\right]$ to tightly embrace depicted points
- However, we are interested in the similarity search, i.e. in triangles with extremely small distance $C$


## Visualisations of Real Life Data



Fig.: DeCAF, $\left[\Omega_{\min }, \Omega_{\max }\right]=\left[25^{\circ}, 80^{\circ}\right]$


Fig.: SIFT, $\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right]=\left[20^{\circ}, 90^{\circ}\right]$


Fig.: MPEG7, $\left[\Omega_{\min }, \Omega_{\max }\right]=\left[20^{\circ}, 110^{\circ}\right]$

- Purple points represent randomly selected triangles $\triangle a, b, c$
- It is possible to set $\left[\Omega_{\text {min }}, \Omega_{\text {max }}\right]$ to tightly embrace depicted points
- However, we are interested in the similarity search, i.e. in triangles with extremely small distance $C$


## Triangles with Small Distance $c$

■ Triangles $\triangle a, b, c$ with extremely small $c$ form a different distribution:


■ Purple points: randomly selected triangles
■ Black circles: triangles where $c=d(q, o)$ is the distance of a random $q \in D$ to each one of its 100 nearest neighbours $o \in X$, for 1000 different $q \in D$

## Triangles with Small Distance $C$

■ Triangles $\triangle a, b, c$ with extremely small $c$ form a different distribution:


■ Purple points: randomly selected triangles
■ Black circles: triangles where $c=d(q, o)$ is the distance of a random $q \in D$ to each one of its 100 nearest neighbours $o \in X$, for 1000 different $q \in D$

■ Angles limitation $\left[\Omega_{\min }, \Omega_{\text {max }}\right.$ ] must be selected independently for each new bound on $c$ to tightly embrace the black points depicting triangles with a near neighbour

- Future work: We would really like to know, how to set $\left[\Omega_{\min }, \Omega_{\max }\right.$ ] for each bound on $c$ analytically, without using these plots


## Visualisations of Real Life Data



Fig.: DeCAF descriptors



Fig.: MPEG7 descriptors

Fig.: SIFT descriptors

## Derived Bounds on $c$

|  | $\mathcal{C}_{\text {LB_diff }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ | $\mathcal{C}_{\text {LB_sum }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ | $\mathcal{C}_{\text {UB_sum }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ |
| :---: | :---: | :---: | :---: |
| DeCAF descriptors | $\left[28^{\circ}, 90^{\circ}\right]$ | $\left[8^{\circ}, 86^{\circ}\right]$ | $\left[30^{\circ}, 80^{\circ}\right]$ |
|  | $c \geq 1.664 \cdot\|b-a\|$ | $c \geq 0.070 \cdot(b+a)$ | $c \leq 0.684 \cdot(b+a)$ |
| SIFT descriptors | $\left[12^{\circ}, 84^{\circ}\right]$ | $\left[3^{\circ}, 88.5^{\circ}\right]$ | $\left[20^{\circ}, 85^{\circ}\right]$ |
|  | $c \geq 1.264 \cdot\|b-a\|$ | $c \geq 0.026 \cdot(b+a)$ | $c \leq 0.762 \cdot(b+a)$ |
| MPEG7 descriptors | $\left[8^{\circ}, 86^{\circ}\right]$ | $\left[4^{\circ}, 88^{\circ}\right]$ | $\left[40^{\circ}, 90^{\circ}\right]$ |
|  | $c \geq 1.162 \cdot\|b-a\|$ | $c \geq 0.035 \cdot(b+a)$ | $c \leq 0.710 \cdot(b+a)$ |

Table: Selected angles limitation [ $\Omega_{\text {min }}, \Omega_{\text {max }}$ ], and new bounds on $c$

■ So how the new bounds on c infer the metric filtering in practice?

## Derived Bounds on $c$

|  | $\mathcal{C}_{\text {LB_diff }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ | $\mathcal{C}_{\text {LB_sum }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ | $\mathcal{C}_{\text {UB_sum }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ |
| :---: | :---: | :---: | :---: |
| DeCAF descriptors | $\left[28^{\circ}, 90^{\circ}\right]$ | $\left[8^{\circ}, 86^{\circ}\right]$ | $\left[30^{\circ}, 80^{\circ}\right]$ |
|  | $c \geq 1.664 \cdot\|b-a\|$ | $c \geq 0.070 \cdot(b+a)$ | $c \leq 0.684 \cdot(b+a)$ |
| SIFT descriptors | $\left[12^{\circ}, 84^{\circ}\right]$ | $\left[3^{\circ}, 88.5^{\circ}\right]$ | $\left[20^{\circ}, 85^{\circ}\right]$ |
|  | $c \geq 1.264 \cdot\|b-a\|$ | $c \geq 0.026 \cdot(b+a)$ | $c \leq 0.762 \cdot(b+a)$ |
| MPEG7 descriptors | $\left[8^{\circ}, 86^{\circ}\right]$ | $\left[4^{\circ}, 88^{\circ}\right]$ | $\left[40^{\circ}, 90^{\circ}\right]$ |
|  | $c \geq 1.162 \cdot\|b-a\|$ | $c \geq 0.035 \cdot(b+a)$ | $c \leq 0.710 \cdot(b+a)$ |

Table: Selected angles limitation [ $\Omega_{\text {min }}, \Omega_{\text {max }}$ ], and new bounds on $c$

■ So how the new bounds on c infer the metric filtering in practice?

## Derived Bounds on $c$

|  | $\mathcal{C}_{\text {LB_diff }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ | $\mathcal{C}_{\text {LB_sum }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ | $\mathcal{C}_{\text {UB_sum }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ |
| :---: | :---: | :---: | :---: |
| DeCAF descriptors | $\left[28^{\circ}, 90^{\circ}\right]$ | $\left[8^{\circ}, 86^{\circ}\right]$ | $\left[30^{\circ}, 80^{\circ}\right]$ |
|  | $c \geq 1.664 \cdot\|b-a\|$ | $c \geq 0.070 \cdot(b+a)$ | $c \leq 0.684 \cdot(b+a)$ |
| SIFT descriptors | $\left[12^{\circ}, 84^{\circ}\right]$ | $\left[3^{\circ}, 88.5^{\circ}\right]$ | $\left[20^{\circ}, 85^{\circ}\right]$ |
|  | $c \geq 1.264 \cdot\|b-a\|$ | $c \geq 0.026 \cdot(b+a)$ | $c \leq 0.762 \cdot(b+a)$ |
| MPEG7 descriptors | $\left[8^{\circ}, 86^{\circ}\right]$ | $\left[4^{\circ}, 88^{\circ}\right]$ | $\left[40^{\circ}, 90^{\circ}\right]$ |
|  | $c \geq 1.162 \cdot\|b-a\|$ | $c \geq 0.035 \cdot(b+a)$ | $c \leq 0.710 \cdot(b+a)$ |

Table: Selected angles limitation [ $\Omega_{\text {min }}, \Omega_{\text {max }}$ ], and new bounds on $c$

■ So how the new bounds on c infer the metric filtering in practice?

## Derived Bounds on $c$

|  | $\mathcal{C}_{\mathrm{LB}_{2} \text { diff }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ | $\mathcal{C}_{\mathrm{LB} \text { _sum }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ | $\mathcal{C}_{\text {UB_sum }}\left(\Omega_{\text {min }}, \Omega_{\text {max }}\right)$ |
| :---: | :---: | :---: | :---: |
| DeCAF descriptors | $\left[28^{\circ}, 90^{\circ}\right]$ | $\left[8^{\circ}, 86^{\circ}\right]$ | $\left[30^{\circ}, 80^{\circ}\right]$ |
|  | $c \geq 1.664 \cdot\|b-a\|$ | $c \geq 0.070 \cdot(b+a)$ | $c \leq 0.684 \cdot(b+a)$ |
| SIFT descriptors | $\left[12^{\circ}, 84^{\circ}\right]$ | $\left[3^{\circ}, 88.5^{\circ}\right]$ | $\left[20^{\circ}, 85^{\circ}\right]$ |
|  | $c \geq 1.264 \cdot\|b-a\|$ | $c \geq 0.026 \cdot(b+a)$ | $c \leq 0.762 \cdot(b+a)$ |
| MPEG7 descriptors | $\left[8^{\circ}, 86^{\circ}\right]$ | $\left[4^{\circ}, 88^{\circ}\right]$ | $\left[40^{\circ}, 90^{\circ}\right]$ |
|  | $c \geq 1.162 \cdot\|b-a\|$ | $c \geq 0.035 \cdot(b+a)$ | $c \leq 0.710 \cdot(b+a)$ |

Table: Selected angles limitation [ $\Omega_{\text {min }}, \Omega_{\text {max }}$ ], and new bounds on $c$

■ So how the new bounds on c infer the metric filtering in practice?

## Experiments

■ We examine number of saved distance computations with normal triangle inequalities and with new bounds

■ Filtering with 256 random pivots

- Evaluation of 1000 random query objects - values depicted by box-plots
- Searching for $k \in 10,100$ nearest neighbours (NN)

■ $k$-NN queries are evaluated with gradual shrinking of the searching radius
■ 3 datasets of size 1M objects each: SIFTs, DeCAF, MPEG7

## Experiments

- Dark and light box-plots describe filtering with pure triangle inequalities, and with new bounds, respectively
■ Median numbers of skipped distance computations in case of 10NN queries increase:
■ from $0.4 \%$ to 11.8 \% (DeCAF)
■ from 59.4 \% to 75.2 \% (SIFT)
■ from 64.5 \% to 80.2 \% (MPEG7)



## Quality of the Approximation

■ The evaluation with new bounds is just approximate
■ Answers can contain just some of the true nearest neighbours,

- and also false positives due to a wrong upper-bound or gradual shrinking of the searching radius.

■ Nevertheless:
■ 999 out of 1000 answers to 10NN query contain ALL 10 NN in case of all datasets

- The median query answer size is 10 in case of all datasets
- Answers to 100 NN queries contain all 100 NN in case of 955,963 and 923 query objects in case of the DeCAF, SIFT, and MPEG7 dataset, respectively.
- The biggest answers are in case of MPEG7 descriptors: 105 objects on median


## Quality of the Approximation

■ The evaluation with new bounds is just approximate
■ Answers can contain just some of the true nearest neighbours,
■ and also false positives due to a wrong upper-bound or gradual shrinking of the searching radius.

■ Nevertheless:
■ 999 out of 1000 answers to 10NN query contain ALL 10 NN in case of all datasets

- The median query answer size is 10 in case of all datasets
- Answers to 100 NN queries contain all 100 NN in case of 955, 963 and 923 query objects in case of the DeCAF, SIFT, and MPEG7 dataset, respectively.
- The biggest answers are in case of MPEG7 descriptors: 105 objects on median


## Quality of the Approximation

■ The evaluation with new bounds is just approximate
■ Answers can contain just some of the true nearest neighbours,
■ and also false positives due to a wrong upper-bound or gradual shrinking of the searching radius.

■ Nevertheless:
■ 999 out of 1000 answers to 10NN query contain ALL 10 NN in case of all datasets

- The median query answer size is 10 in case of all datasets
- Answers to 100 NN queries contain all 100 NN in case of 955,963 and 923 query objects in case of the DeCAF, SIFT, and MPEG7 dataset, respectively.
- The biggest answers are in case of MPEG7 descriptors: 105 objects on median


## II U II I <br> C4E



EUROPEAN UNION
European Structural and Investment Funds Operational Programme Research,
Development and Education

N
MINISTRY OF EDUCATION,
YOUTH AND SPORTS

## C4E.CZ


[^0]:    ${ }^{1}$ DeCAF descriptors, 4096 dimensional float vectors from a neural network, Euclidean space

[^1]:    ${ }^{1}$ DeCAF descriptors, 4096 dimensional float vectors from a neural network, Euclidean space

[^2]:    ${ }^{2}$ indefinite expression $0 \cdot \infty$

[^3]:    ${ }^{2}$ indefinite expression $0 \cdot \infty$

[^4]:    ${ }^{2}$ indefinite expression $0 \cdot \infty$

[^5]:    ${ }^{2}$ indefinite expression $0 \cdot \infty$

[^6]:    ${ }^{3}$ Angle $\gamma$ is not needed since it is given as $\gamma=180^{\circ}-\alpha-\beta$

[^7]:    ${ }^{3}$ Angle $\gamma$ is not needed since it is given as $\gamma=180^{\circ}-\alpha-\beta$

[^8]:    ${ }^{3}$ Angle $\gamma$ is not needed since it is given as $\gamma=180^{\circ}-\alpha-\beta$

[^9]:    ${ }^{4}$ formal definition is in the article

