Detailed Information on Publication Record
2019
Decomposing Graphs into Edges and Triangles
KRÁĽ, Daniel, B LIDICKY, TL MARTINS and Y PEHOVABasic information
Original name
Decomposing Graphs into Edges and Triangles
Authors
KRÁĽ, Daniel, B LIDICKY, TL MARTINS and Y PEHOVA
Edition
COMBINATORICS PROBABILITY & COMPUTING, NEW YORK, CAMBRIDGE UNIV PRESS, 2019, 0963-5483
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Confidentiality degree
není předmětem státního či obchodního tajemství
Impact factor
Impact factor: 0.879
UT WoS
000462848800006
Změněno: 3/11/2020 14:54, Mgr. Darina Boukalová
Abstract
V originále
We prove the following 30 year-old conjecture of Gyori and Tuza: the edges of every n-vertex graph G can be decomposed into complete graphs C-1, ..., C-l of orders two and three such that vertical bar C-1 vertical bar+ ... + vertical bar C-l vertical bar (1/2 + o(1))n(2). This result implies the asymptotic version of the old result of Erdos, Goodman and POsa that asserts the existence of such a decomposition with l <= n(2)/4.