VAŠÍČEK, Ondřej, Radek FEDR, Svitlana SKOROPLYAS, David CHALUPA, Matěj SKLENÁŘ, Prabhakara Rao THARRA, Jakub ŠVENDA and Lukáš KUBALA. Natural pseurotins and analogs thereof inhibit activation of B-cells and differentiation into the plasma cells. Phytomedicine. Munich: Elsevier GmbH, 2020, vol. 69, APR 2020, p. 1-12. ISSN 0944-7113. Available from: https://dx.doi.org/10.1016/j.phymed.2020.153194.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Natural pseurotins and analogs thereof inhibit activation of B-cells and differentiation into the plasma cells
Authors VAŠÍČEK, Ondřej, Radek FEDR, Svitlana SKOROPLYAS (804 Ukraine, belonging to the institution), David CHALUPA (203 Czech Republic, belonging to the institution), Matěj SKLENÁŘ (203 Czech Republic, belonging to the institution), Prabhakara Rao THARRA (356 India, belonging to the institution), Jakub ŠVENDA (203 Czech Republic, guarantor, belonging to the institution) and Lukáš KUBALA (203 Czech Republic, belonging to the institution).
Edition Phytomedicine, Munich, Elsevier GmbH, 2020, 0944-7113.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10401 Organic chemistry
Country of publisher Germany
Confidentiality degree is not subject to a state or trade secret
WWW URL
Impact factor Impact factor: 5.340
RIV identification code RIV/00216224:14310/20:00116938
Organization unit Faculty of Science
Doi http://dx.doi.org/10.1016/j.phymed.2020.153194
UT WoS 000532044500014
Keywords in English Pseurotins; Lymphocyte; Plasma cell; Immunoglobulins; IgE; STATs
Tags rivok
Tags International impact, Reviewed
Changed by Changed by: Mgr. Marie Šípková, DiS., učo 437722. Changed: 20/2/2023 08:11.
Abstract
Background: The frequency of allergic diseases is constantly rising. Dysregulated production of isotype E immunoglobulins is one of the key factors behind allergic reactions and its modulation is therefore an important target for pharmacological intervention. Natural products of the pseurotin family were reported to be inhibitors of IgE production in B-cells. Mechanistic details underlying these effects are however not well understood. Purpose: In the present study, we synthesized new analogs of natural pseurotins and extensively investigated their inhibitory effects on activation, proliferation and differentiation of B-cells, as well as on the production of IgE. Study design: Effects of two natural pseurotins (pseurotins A and D) and a collection of fully synthetic pseurotin analogs were studied on mouse B-cells stimulated by the combination of IL-4 and E. coli lipopolysaccharide. The IgE production was determined along with cell viability and cell proliferation. The phosphorylation of selected members of the STAT transcription factor family was subsequently investigated. Finally, the in vivo effect of pseurotin D on the ovalbumin-induced delayed type hypersensitivity response was tested in mice. Results: We discovered that several fully synthetic pseurotin analogs were able to decrease the production of IgE in stimulated B-cells with potency comparable to that of pseurotins A and D. We found that the two natural pseurotins and the active synthetic analogs inhibited the phosphorylation of STAT3, STAT5 and STAT6 proteins in stimulated B-cells, resulting in the inhibition of B-cell proliferation and differentiation into the plasma cells. In vivo, pseurotin D decreased ovalbumin-induced foot pad edema. Conclusion: Our results advance the current mechanistic understanding of the pseurotin-induced inhibition of IgE production in B-cells by linking the effect to STAT signaling, and associated modulation of B-cell proliferation and differentiation. Together with our finding that structurally simpler pseurotin analogs were able to reproduce the effects of natural pseurotins, the presented work has implications for the future research on these secondary metabolites in the context of allergic diseases.
Links
EF16_025/0007381, research and development projectName: Preklinická progrese nových organických sloučenin s cílenou biologickou aktivitou
EF16_027/0008360, research and development projectName: Postdoc@MUNI
LM2015063, research and development projectName: Národní infrastruktura chemické biologie (Acronym: CZ-­OPENSCREEN)
Investor: Ministry of Education, Youth and Sports of the CR
PrintDisplayed: 18/7/2024 03:36