HRDINA, Jaroslav and Lenka ZALABOVÁ. Local Geometric Control of a Certain Mechanism with the Growth Vector (4,7). Journal of Dynamical and Control Systems. New York: Springer, 2020, vol. 26, No 2, p. 199-216. ISSN 1079-2724. doi:10.1007/s10883-019-09460-7.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Local Geometric Control of a Certain Mechanism with the Growth Vector (4,7)
Authors HRDINA, Jaroslav (guarantor) and Lenka ZALABOVÁ (203 Czech Republic, belonging to the institution).
Edition Journal of Dynamical and Control Systems, New York, Springer, 2020, 1079-2724.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10101 Pure mathematics
Country of publisher United States of America
Confidentiality degree is not subject to a state or trade secret
WWW URL
Impact factor Impact factor: 1.425
RIV identification code RIV/00216224:14310/20:00114471
Organization unit Faculty of Science
Doi http://dx.doi.org/10.1007/s10883-019-09460-7
UT WoS 000519375400001
Keywords in English Local control; Sub-Riemannian geometry; Pontryagin's maximum principle; Nilpotent Lie group
Tags rivok
Tags International impact, Reviewed
Changed by Changed by: Mgr. Marie Šípková, DiS., učo 437722. Changed: 16/11/2020 11:08.
Abstract
We study local control of a mechanism with the growth vector (4,7). We study controllability and extremal trajectories of the nilpotent approximation as an example of the control theory on a Lie group. We provide solutions to the system and show examples of local extremal trajectories.
Links
GA17-01171S, research and development projectName: Invariantní diferenciální operátory a jejich aplikace v geometrickém modelování a v teorii optimálního řízení
Investor: Czech Science Foundation
PrintDisplayed: 27/9/2022 00:20