J 2021

On the compositum of orthogonal cyclic fields of the same odd prime degree

GREITHER, Cornelius Johannes and Radan KUČERA

Basic information

Original name

On the compositum of orthogonal cyclic fields of the same odd prime degree

Authors

GREITHER, Cornelius Johannes (276 Germany) and Radan KUČERA (203 Czech Republic, guarantor, belonging to the institution)

Edition

Canadian Journal of Mathematics-Journal canadien de mathématiques, Cambridge, Cambridge University Press, 2021, 0008-414X

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 1.455

RIV identification code

RIV/00216224:14310/21:00118788

Organization unit

Faculty of Science

UT WoS

000729499500004

Keywords in English

Circular (cyclotomic) units; absolutely abelian fields; class groups

Tags

Tags

International impact, Reviewed
Změněno: 27/1/2022 11:28, Mgr. Marie Šípková, DiS.

Abstract

V originále

The aim of this paper is to study circular units in the compositum K of t cyclic extensions of Q (t ≥ 2) of the same odd prime degree ℓ. If these fields are pairwise arithmetically orthogonal and the number s of primes ramifying in K/Q is larger than t, then a nontrivial root ε of the top generator η of the group of circular units of K is constructed. This explicit unit ε is used to define an enlarged group of circular units of K, to show that ℓ^{(s−t)ℓ^{t−1}} divides the class number of K, and to prove an annihilation statement for the ideal class group of K.

Links

GA18-11473S, research and development project
Name: Grupy tříd ideálů abelovských rozšíření některých číselných těles
Investor: Czech Science Foundation