Detailed Information on Publication Record
2021
On the compositum of orthogonal cyclic fields of the same odd prime degree
GREITHER, Cornelius Johannes and Radan KUČERABasic information
Original name
On the compositum of orthogonal cyclic fields of the same odd prime degree
Authors
GREITHER, Cornelius Johannes (276 Germany) and Radan KUČERA (203 Czech Republic, guarantor, belonging to the institution)
Edition
Canadian Journal of Mathematics-Journal canadien de mathématiques, Cambridge, Cambridge University Press, 2021, 0008-414X
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 1.455
RIV identification code
RIV/00216224:14310/21:00118788
Organization unit
Faculty of Science
UT WoS
000729499500004
Keywords in English
Circular (cyclotomic) units; absolutely abelian fields; class groups
Tags
Tags
International impact, Reviewed
Změněno: 27/1/2022 11:28, Mgr. Marie Šípková, DiS.
Abstract
V originále
The aim of this paper is to study circular units in the compositum K of t cyclic extensions of Q (t ≥ 2) of the same odd prime degree ℓ. If these fields are pairwise arithmetically orthogonal and the number s of primes ramifying in K/Q is larger than t, then a nontrivial root ε of the top generator η of the group of circular units of K is constructed. This explicit unit ε is used to define an enlarged group of circular units of K, to show that ℓ^{(s−t)ℓ^{t−1}} divides the class number of K, and to prove an annihilation statement for the ideal class group of K.
Links
GA18-11473S, research and development project |
|