J 2021

Gas aggregated Ag nanoparticles as the inorganic matrix for laser desorption/ionization mass spectrometry

KRATOCHVÍL, Jiří, Vadym PRYSIAZHNYI, Filip DYČKA, Ondřej KYLIÁN, Peter KÚŠ et. al.

Basic information

Original name

Gas aggregated Ag nanoparticles as the inorganic matrix for laser desorption/ionization mass spectrometry

Name in Czech

Ag nanočástice agregované s plynem jako anorganická matice pro hmotnostní spektrometrii s laserovou desorpcí / ionizací

Authors

KRATOCHVÍL, Jiří (203 Czech Republic), Vadym PRYSIAZHNYI (804 Ukraine, guarantor, belonging to the institution), Filip DYČKA (203 Czech Republic), Ondřej KYLIÁN (203 Czech Republic), Peter KÚŠ (203 Czech Republic), Petr SEZEMSKÝ (203 Czech Republic), Ján ŠTĚRBA (203 Czech Republic) and Vítězslav STRAŇÁK (203 Czech Republic)

Edition

Applied Surface Science, Amsterdam, Elsevier Science, 2021, 0169-4332

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

20506 Coating and films

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 7.392

RIV identification code

RIV/00216224:14310/21:00120868

Organization unit

Faculty of Science

UT WoS

000608511200005

Keywords in English

Gas aggregation source; Laser desorption/ionization time-of-flight mass spectrometry; Nanoparticles

Tags

Tags

International impact, Reviewed
Změněno: 11/2/2021 14:19, Mgr. Marie Šípková, DiS.

Abstract

V originále

We report here on a nanoparticle-assisted laser desorption/ionization time-of-flight mass spectrometry (NP-LDI-TOF MS) for the detection of small molecules. This technique is based on the overcoating of a dried analyte by an array of silver nanoparticles produced by gas aggregation source. This allows for the spatially homogeneous distribution of nanoparticles over the analyte that may fully substitute a conventional organic matrix routinely used for the matrix-assisted laser desorption/ionization mass spectrometry and thus limit the possible interference of matrix with the low-mass molecules. Furthermore, it is shown that the intensity of the detected signal strongly correlates with the number of deposited Ag nanoparticles. At its optimum, that was found to correspond to the nanoparticle surface density of 3x103 NPs*µm-2, the detection limit was 3x10-8 g*L-1 for riboflavin. Such a high detection limit, together with good reproducibility, excellent signal stability, and imaging capability, makes this technique a valuable alternative to other laser desorption/ionization-based detection methods.