J 2020

Nanostructures in various Au ion-implanted ZnO facets modified using energetic O ions

MACKOVÁ, Anna, Adéla JAGEROVÁ, Petr MALINSKÝ, Mariapompea CUTRONEO, J. FLAKS et. al.

Basic information

Original name

Nanostructures in various Au ion-implanted ZnO facets modified using energetic O ions

Authors

MACKOVÁ, Anna, Adéla JAGEROVÁ, Petr MALINSKÝ, Mariapompea CUTRONEO, J. FLAKS, Pavla NEKVINDOVÁ, Alena MICHALCOVÁ, Václav HOLÝ (203 Czech Republic, guarantor, belonging to the institution) and Tereza KOŠUTOVÁ

Edition

Physical Chemistry Chemical Physics, Cambridge, Royal Society of Chemistry, 2020, 1463-9076

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10304 Nuclear physics

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 3.676

RIV identification code

RIV/00216224:14740/20:00117384

Organization unit

Central European Institute of Technology

UT WoS

000582937400008

Keywords in English

metal nanoparticles; optical-properties

Tags

Tags

International impact, Reviewed
Změněno: 13/4/2022 08:44, Mgr. Marie Šípková, DiS.

Abstract

V originále

Noble metal nanoparticles dispersed in semiconductors, mainly in ZnO, have been intensively investigated. Au dispersion and possible precipitation as well as damage growth were studied in ZnO of various orientations, a-plane (1120) and c-plane (0001), using 1 MeV Au+-ion implantation with an ion fluence of 1.5 x 10(16) cm(-2) and subsequently annealed at 600 degrees C in an ambient atmosphere for one hour. Afterwards, irradiation with 10 MeV O3+ at a fluence of 5 x 10(14) cm(-2) was used to modify Au distribution and internal morphology as well as to follow the structural modification of ZnO under high-energy light-ion irradiation. Rutherford backscattering spectrometry in the channelling mode (RBS-C) and Raman spectroscopy show that O irradiation with high electronic energy transfer distinctly modifies the implanted Au layer in various ZnO facets; it introduces additional displacement and disorder in the O sublattice mainly in the a-plane while not creating an additional strain in this facet. This has been confirmed by XRD analysis, identifying the appearance of an additional phase (nanocrystallites) after Au implantation, which diminishes after O irradiation, and RBS-C has identified decreased disorder in the Zn-sublattice. Unlike in c-plane ZnO, it has been possible to observe a local compressive deformation around spherical defects, which is more pronounced after O irradiation simultaneously with the vertical strain introduced in the Au-implanted and annealed layer. Transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS) was employed to investigate the interior morphology, showing the occurrence of Au-hcp clusters of the small sizes of about 4-10 nm; neither the cluster sizes nor their shapes are significantly affected by the O irradiation.