Detailed Information on Publication Record
2020
Biallelic mutations in LAMA5 disrupts a skeletal noncanonical focal adhesion pathway and produces a distinct bent bone dysplasia
BARAD, M., F. CSUKASI, Michaela BOSÁKOVÁ, J. H. MARTIN, W. J. ZHANG et. al.Basic information
Original name
Biallelic mutations in LAMA5 disrupts a skeletal noncanonical focal adhesion pathway and produces a distinct bent bone dysplasia
Authors
BARAD, M., F. CSUKASI, Michaela BOSÁKOVÁ (203 Czech Republic, belonging to the institution), J. H. MARTIN, W. J. ZHANG, S. P. TAYLOR, R. S. LACHMAN, J. ZIEBA, M. BAMSHAD, D. NICKERSON, J. X. CHONG, D. H. COHN, Pavel KREJČÍ (203 Czech Republic, belonging to the institution), D. KRAKOW (guarantor) and I. DURAN
Edition
EBioMedicine, Amsterdam, Elsevier Science BV, 2020, 2352-3964
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
30218 General and internal medicine
Country of publisher
Netherlands
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 8.143
RIV identification code
RIV/00216224:14110/20:00114662
Organization unit
Faculty of Medicine
UT WoS
000601316000027
Keywords in English
Laminin alpha 5; LAMA5; Skeletal dysplasia; Bent bone; beta 1 integrin
Tags
International impact, Reviewed
Změněno: 13/1/2021 10:02, Mgr. Tereza Miškechová
Abstract
V originále
Background: Beyond its structural role in the skeleton, the extracellular matrix (ECM), particularly basement membrane proteins, facilitates communication with intracellular signaling pathways and cell to cell interactions to control differentiation, proliferation, migration and survival. Alterations in extracellular proteins cause a number of skeletal disorders, yet the consequences of an abnormal ECM on cellular communication remains less well understood Methods: Clinical and radiographic examinations defined the phenotype in this unappreciated bent bone skeletal disorder. Exome analysis identified the genetic alteration, confirmed by Sanger sequencing. Quantitative PCR, western blot analyses, immunohistochemistry, luciferase assay for WNT signaling were employed to determine RNA, proteins levels and localization, and dissect out the underlying cell signaling abnormalities. Migration and wound healing assays examined cell migration properties. Findings: This bent bone dysplasia resulted from biallelic mutations in LAMA5, the gene encoding the alpha-5 laminin basement membrane protein. This finding uncovered a mechanism of disease driven by ECM-cell interactions between alpha-5-containing laminins, and integrin-mediated focal adhesion signaling, particularly in cartilage. Loss of LAMA5 altered beta 1 integrin signaling through the non-canonical kinase PYK2 and the skeletal enriched SRC kinase, FYN. Loss of LAMA5 negatively impacted the actin cytoskeleton, vinculin localization, and WNT signaling. Interpretation: This newly described mechanism revealed a LAMA5-beta 1 Integrin-PYK2-FYN focal adhesion complex that regulates skeletogenesis, impacted WNT signaling and, when dysregulated, produced a distinct skeletal disorder. (C) 2020 The Authors. Published by Elsevier B.V.
Links
GA19-20123S, research and development project |
|