DNA damage tolerance (DDT) and homologous recombination (HR) stabilize replication forks (RFs). RAD18/UBC13/three prime repair exonuclease 2 (TREX2)-mediated proliferating cell nuclear antigen (PCNA) ubiqui-tination is central to DDT, an error-prone lesion bypass pathway. RAD51 is the recombinase for HR. The RAD51(K133A) mutation increased spontaneous mutations and stress-induced RF stalls and nascent strand degradation. Here, we report in RAD51(K133A) cells that this phenotype is reduced by expressing a TREX2 H188A mutation that deletes its exonuclease activity. In RAD51(K133A) cells, knocking out RAD18 or overexpressing PCNA reduces spontaneous mutations, while expressing ubiquitination-incompetent PCNA(K164R )increases mutations, indicating DDT as causal. Deleting TREX2 in cells deficient for the RF maintenance proteins poly(ADP-ribose) polymerase 1 (PARP1) or FANCB increased nascent strand degradation that was rescued by TREX2(H188A), implying that TREX2 prohibits degradation independent of catalytic activity. A possible explanation for this occurrence is that TREX2(H188A) associates with UBC13 and ubiquitinates PCNA, suggesting a dual role for TREX2 in RF maintenance.
Návaznosti
EF16_027/0008360, projekt VaV
Název: Postdoc@MUNI
GA17-17720S, projekt VaV
Název: Vnitřní vlastnosti RAD51 vlákna a jeho biologické regulace
Investor: Grantová agentura ČR, Vnitřní vlastnosti RAD51 vlákna a jeho biologické regulace
MUNI/G/1594/2019, interní kód MU
Název: RecQ4 – a protein hub required for proper replication and recombination and its implications in Rothmund-Thomson Syndrome
Investor: Masarykova univerzita, RecQ4 – a protein hub required for proper replication and recombination and its implications in Rothmund-Thomson Syndrome, INTERDISCIPLINARY - Mezioborové výzkumné projekty
21-22593X, interní kód MU
Název: Identification and characterization of proteins involved in metabolism of G-quadruplexes and R-loops and molecular mechanisms of their relationship with replication
Investor: Grantová agentura ČR, Identification and characterization of proteins involved in metabolism of G-quadruplexes and R-loops and molecular mechanisms of their relationship with replication