PAUKOVČEKOVÁ, Silvia, Jan ŠKODA, Jakub NERADIL, Erika MIKULENKOVÁ, Petr CHLAPEK, Jaroslav ŠTĚRBA, Desi Raymond RICHARDSON and Renata VESELSKÁ. Novel Thiosemicarbazones Sensitize Pediatric Solid Tumor Cell-Types to Conventional Chemotherapeutics through Multiple Molecular Mechanisms. Cancers. Basel: MDPI, 2020, vol. 12, No 12, p. 1-23. ISSN 2072-6694. Available from: https://dx.doi.org/10.3390/cancers12123781.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Novel Thiosemicarbazones Sensitize Pediatric Solid Tumor Cell-Types to Conventional Chemotherapeutics through Multiple Molecular Mechanisms
Authors PAUKOVČEKOVÁ, Silvia (703 Slovakia, belonging to the institution), Jan ŠKODA (203 Czech Republic, belonging to the institution), Jakub NERADIL (203 Czech Republic, belonging to the institution), Erika MIKULENKOVÁ (203 Czech Republic, belonging to the institution), Petr CHLAPEK (203 Czech Republic, belonging to the institution), Jaroslav ŠTĚRBA (203 Czech Republic, belonging to the institution), Desi Raymond RICHARDSON (36 Australia, belonging to the institution) and Renata VESELSKÁ (203 Czech Republic, guarantor, belonging to the institution).
Edition Cancers, Basel, MDPI, 2020, 2072-6694.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10603 Genetics and heredity
Country of publisher Switzerland
Confidentiality degree is not subject to a state or trade secret
WWW URL
Impact factor Impact factor: 6.639
RIV identification code RIV/00216224:14310/20:00117866
Organization unit Faculty of Science
Doi http://dx.doi.org/10.3390/cancers12123781
UT WoS 000602249000001
Keywords in English thiosemicarbazones; DpC; Dp44mT; celecoxib; temozolomide; etoposide; combined anti-cancer treatment; osteosarcoma; medulloblastoma; neuroblastoma
Tags 14110321, podil, rivok
Tags International impact, Reviewed
Changed by Changed by: Mgr. Tereza Miškechová, učo 341652. Changed: 4/3/2021 10:39.
Abstract
Combination of chemotherapeutics for the treatment of childhood cancer can lead to the use of lower cytotoxic drug doses and better therapeutic tolerability (i.e., lower side effects) for patients. We discovered novel molecular targets of two lead thiosemicarbazone agents of the di-2-pyridylketone thiosemicarbazone class. These molecular targets include: cyclooxygenase, the DNA repair protein, O6-methylguanine DNA methyltransferase, mismatch repair proteins, and topoisomerase 2 alpha. This research also identifies promising synergistic interactions of these thiosemicarbazones particularly with the standard chemotherapeutic, celecoxib. Combining low-dose chemotherapies is a strategy for designing less toxic and more potent childhood cancer treatments. We examined the effects of combining the novel thiosemicarbazones, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), or its analog, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), with the standard chemotherapies, celecoxib (CX), etoposide (ETO), or temozolomide (TMZ). These combinations were analyzed for synergism to inhibit proliferation of three pediatric tumor cell-types, namely osteosarcoma (Saos-2), medulloblastoma (Daoy) and neuroblastoma (SH-SY5Y). In terms of mechanistic dissection, this study discovered novel thiosemicarbazone targets not previously identified and which are important for considering possible drug combinations. In this case, DpC and Dp44mT caused: (1) up-regulation of a major protein target of CX, namely cyclooxygenase-2 (COX-2); (2) down-regulation of the DNA repair protein, O-6-methylguanine DNA methyltransferase (MGMT), which is known to affect TMZ resistance; (3) down-regulation of mismatch repair (MMR) proteins, MSH2 and MSH6, in Daoy and SH-SY5Y cells; and (4) down-regulation in all three cell-types of the MMR repair protein, MLH1, and also topoisomerase 2 alpha (Topo2 alpha), the latter of which is an ETO target. While thiosemicarbazones up-regulate the metastasis suppressor, NDRG1, in adult cancers, it is demonstrated herein for the first time that they induce NDRG1 in all three pediatric tumor cell-types, validating its role as a potential target. In fact, siRNA studies indicated that NDRG1 was responsible for MGMT down-regulation that may prevent TMZ resistance. Examining the effects of combining thiosemicarbazones with CX, ETO, or TMZ, the most promising synergism was obtained using CX. Of interest, a positive relationship was observed between NDRG1 expression of the cell-type and the synergistic activity observed in the combination of thiosemicarbazones and CX. These studies identify novel thiosemicarbazone targets relevant to childhood cancer combination chemotherapy.
Links
MUNI/A/1409/2019, interní kód MUName: Personalizovaná léčba v dětské onkologii: na cestě k "liquid dynamic medicine" a "N-of-1 clinical trials"
Investor: Masaryk University, Category A
NV17-33104A, research and development projectName: Terapeutický potenciál nových thiosemicarbazonů v dětské onkologii: možnosti překonání Pgp-zprostředkované lékové rezistence
PrintDisplayed: 26/7/2024 16:28