Detailed Information on Publication Record
2021
On Eliminating Inductive Biases of Deep Language Models
ŠTEFÁNIK, MichalBasic information
Original name
On Eliminating Inductive Biases of Deep Language Models
Authors
Edition
ALPS 2021, 2021
Other information
Language
English
Type of outcome
Prezentace na konferencích
Field of Study
10200 1.2 Computer and information sciences
Country of publisher
Czech Republic
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Organization unit
Faculty of Informatics
Keywords in English
nlp;transformers;inductive bias;generalisation
Tags
International impact
Změněno: 23/5/2022 11:04, RNDr. Pavel Šmerk, Ph.D.
Abstract
V originále
This poster outlines problems of modern neural language models with out-of-domain performance. It suggests that this might be a consequence of narrow model specialization. In order to eliminate this flaw, it suggests two main directions of future work: 1. Introduction of evaluative metrics can identify out-of-domain generalization abilities, while 2. Objective approach adjusts the training objective to respect the desired generalization properties of the system.
Links
MUNI/A/1573/2020, interní kód MU |
|