KELAR TUČEKOVÁ, Zlata, Lukáš VACEK, Richard KRUMPOLEC, Jakub KELAR, Miroslav ZEMÁNEK, Mirko ČERNÁK and Filip RŮŽIČKA. Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination. Molecules. Basel: MDPI, 2021, vol. 26, No 4, p. "910", 13 pp. ISSN 1420-3049. Available from: https://dx.doi.org/10.3390/molecules26040910.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination
Authors KELAR TUČEKOVÁ, Zlata (703 Slovakia, guarantor, belonging to the institution), Lukáš VACEK (203 Czech Republic, belonging to the institution), Richard KRUMPOLEC (703 Slovakia, belonging to the institution), Jakub KELAR (203 Czech Republic, belonging to the institution), Miroslav ZEMÁNEK (203 Czech Republic, belonging to the institution), Mirko ČERNÁK (703 Slovakia, belonging to the institution) and Filip RŮŽIČKA (203 Czech Republic, belonging to the institution).
Edition Molecules, Basel, MDPI, 2021, 1420-3049.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10305 Fluids and plasma physics
Country of publisher Switzerland
Confidentiality degree is not subject to a state or trade secret
WWW URL
Impact factor Impact factor: 4.927
RIV identification code RIV/00216224:14310/21:00119790
Organization unit Faculty of Science
Doi http://dx.doi.org/10.3390/molecules26040910
UT WoS 000624164000001
Keywords in English atmospheric pressure plasma; low-temperature plasma; plasma-activated media; bacterial biofilm; decontamination
Tags 14110113, podil, rivok
Tags International impact, Reviewed
Changed by Changed by: Mgr. Marie Šípková, DiS., učo 437722. Changed: 19/4/2021 17:44.
Abstract
The plasma-activated gas is capable of decontaminating surfaces of different materials in remote distances. The effect of plasma-activated water vapor on Staphylococcus epidermidis, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli biofilm contamination was investigated on the polypropylene nonwoven textile surface. The robust and technically simple multi-hollow surface dielectric barrier discharge was used as a low-temperature atmospheric plasma source to activate the water-based medium. The germicidal efficiency of short and long-time exposure to plasma-activated water vapor was evaluated by standard microbiological cultivation and fluorescence analysis using a fluorescence multiwell plate reader. The test was repeated in different distances of the contaminated polypropylene nonwoven sample from the surface of the plasma source. The detection of reactive species in plasma-activated gas flow and condensed activated vapor, and thermal and electrical properties of the used plasma source, were measured. The bacterial biofilm decontamination efficiency increased with the exposure time and the plasma source power input. The log reduction of viable biofilm units decreased with the increasing distance from the dielectric surface.
Links
LM2018097, research and development projectName: Centrum výzkumu a vývoje plazmatu a nanotechnologických povrchových úprav (Acronym: CEPLANT)
Investor: Ministry of Education, Youth and Sports of the CR
TG02010067, research and development projectName: Rozvoj systému komercializace výsledků VaV na Masarykově univerzitě (Acronym: Rozvoj systému komercializace na MU)
Investor: Technology Agency of the Czech Republic, Subprogram 1
TJ04000329, research and development projectName: Optimalizácia generácie plazmou aktivovaného média s vysokým obsahom ozónu a peroxidu vodíka pri dekontaminácii teplocitlivých materiálov (Acronym: O3/H2O2bio-dekon)
Investor: Technology Agency of the Czech Republic
PrintDisplayed: 28/4/2024 18:56