J 2021

Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination

KELAR TUČEKOVÁ, Zlata, Lukáš VACEK, Richard KRUMPOLEC, Jakub KELAR, Miroslav ZEMÁNEK et. al.

Basic information

Original name

Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination

Authors

KELAR TUČEKOVÁ, Zlata (703 Slovakia, guarantor, belonging to the institution), Lukáš VACEK (203 Czech Republic, belonging to the institution), Richard KRUMPOLEC (703 Slovakia, belonging to the institution), Jakub KELAR (203 Czech Republic, belonging to the institution), Miroslav ZEMÁNEK (203 Czech Republic, belonging to the institution), Mirko ČERNÁK (703 Slovakia, belonging to the institution) and Filip RŮŽIČKA (203 Czech Republic, belonging to the institution)

Edition

Molecules, Basel, MDPI, 2021, 1420-3049

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10305 Fluids and plasma physics

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 4.927

RIV identification code

RIV/00216224:14310/21:00119790

Organization unit

Faculty of Science

UT WoS

000624164000001

Keywords in English

atmospheric pressure plasma; low-temperature plasma; plasma-activated media; bacterial biofilm; decontamination

Tags

International impact, Reviewed
Změněno: 19/4/2021 17:44, Mgr. Marie Šípková, DiS.

Abstract

V originále

The plasma-activated gas is capable of decontaminating surfaces of different materials in remote distances. The effect of plasma-activated water vapor on Staphylococcus epidermidis, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli biofilm contamination was investigated on the polypropylene nonwoven textile surface. The robust and technically simple multi-hollow surface dielectric barrier discharge was used as a low-temperature atmospheric plasma source to activate the water-based medium. The germicidal efficiency of short and long-time exposure to plasma-activated water vapor was evaluated by standard microbiological cultivation and fluorescence analysis using a fluorescence multiwell plate reader. The test was repeated in different distances of the contaminated polypropylene nonwoven sample from the surface of the plasma source. The detection of reactive species in plasma-activated gas flow and condensed activated vapor, and thermal and electrical properties of the used plasma source, were measured. The bacterial biofilm decontamination efficiency increased with the exposure time and the plasma source power input. The log reduction of viable biofilm units decreased with the increasing distance from the dielectric surface.

Links

LM2018097, research and development project
Name: Centrum výzkumu a vývoje plazmatu a nanotechnologických povrchových úprav (Acronym: CEPLANT)
Investor: Ministry of Education, Youth and Sports of the CR
TG02010067, research and development project
Name: Rozvoj systému komercializace výsledků VaV na Masarykově univerzitě (Acronym: Rozvoj systému komercializace na MU)
Investor: Technology Agency of the Czech Republic, Subprogram 1
TJ04000329, research and development project
Name: Optimalizácia generácie plazmou aktivovaného média s vysokým obsahom ozónu a peroxidu vodíka pri dekontaminácii teplocitlivých materiálov (Acronym: O3/H2O2bio-dekon)
Investor: Technology Agency of the Czech Republic