Is lexical insertion regulated by the subset or the superset principle?

Pavel Caha

Masaryk University (Brno)

Linguistic Flashmob 18 February 2021

- Syncretism
- ► Portmenteau morphemes

Syncretism

Portmanteau

The Subset Principle

The Superset principle

	war	servant
NOM	bell- um	serv-us
ACC	bell- um	serv- um

		war	servant
NOM	[A]	bell- um	serv-us
ACC	[A,B]	bell- um	serv-um

		war	servant
NOM	[A]	bell- um	serv-us
ACC	[A,B]	bell- um	serv-um

(1) Lexical entries can match multiple feature structures

		war	servant
NOM	[A]	bell- um	
ACC	[A,B]	bell- um	

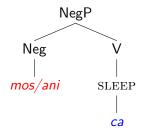
- (1) Lexical entries can match multiple feature structures
 - a. Subset: um = [A]

		war	servant
NOM	[A]	bell- um	serv-us
ACC	[A,B]	bell- um	serv-um

- (1) Lexical entries can match multiple feature structures
 - a. Subset: um = [A]
 - b. Superset: um = [A,B]

Syncretism

Portmanteau

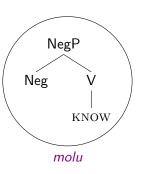

The Subset Principle

The Superset principle

(2) ca -n -ta sleep -pres -decl 'is sleeping'

- (2) ca -n -ta sleep -pres -decl 'is sleeping'
- (3) mos/an(i) ca -n -ta neg sleep -pres -decl 'can't sleep / isn't sleeping'

- (2) ca -n -ta sleep -pres -decl 'is sleeping'
- (3) mos/an(i) ca -n -ta neg sleep -pres -decl 'can't sleep / isn't sleeping'


(4) al -n -ta know -pres -decl 'knows'

- (4) al -n -ta know -pres -decl 'knows'
- (5) *mos/an(i) al -n -ta neg know -pres -decl 'cannot / does not know'

- (4) al -n -ta know -pres -decl 'knows'
- (5) *mos/an(i) al -n -ta neg know -pres -decl 'cannot / does not know'
- (6) molu -n -ta neg.know -pres -decl 'cannot / does not know'

- (4) al -n -ta know -pres -decl 'knows'
- (5) *mos/an(i) al -n -ta neg know -pres -decl 'cannot / does not know'
- (6) molu -n -ta neg.know -pres -decl 'cannot / does not know'
- (7) molu = [NEG KNOW]

- (4) al -n -ta know -pres -decl 'knows'
- (5) *mos/an(i) al -n -ta neg know -pres -decl 'cannot / does not know'
- (6) molu -n -ta neg.know -pres -decl 'cannot / does not know'
- (7) molu = [NEG KNOW]

Syncretism

Portmanteau

The Subset Principle

The Superset principle

The Subset Principle

(8) The Subset Principle (Halle 1997)
The phonological exponent of a Vocabulary Item is inserted into a morpheme of the terminal string if the item matches all or only a subset of the grammatical features specified in the terminal morpheme.

The Subset Principle

(8) The Subset Principle (Halle 1997)
The phonological exponent of a Vocabulary Item is inserted into a morpheme of the terminal string if the item matches all or only a subset of the grammatical features specified in the terminal morpheme.

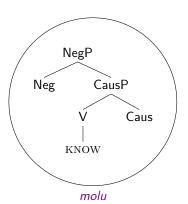
(9) The Modified Subset Principle (would fail, if proposed)
The phonological exponent of a Vocabulary Item is inserted into a **node** if the item matches all or only a subset of the grammatical features specified in the **node**.

- (10) The Modified Subset Principle
 The phonological exponent of a Vocabulary Item is inserted into a **node** if the item matches all or only a subset of the grammatical features specified in the **node**.
- (11) $molu \Leftrightarrow [NEG KNOW]$

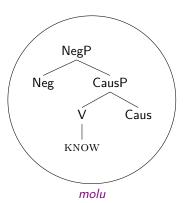
(10) The Modified Subset Principle
The phonological exponent of a Vocabulary Item is inserted into a **node** if the item matches all or only a subset of the grammatical features specified in the **node**.

- (11) $molu \Leftrightarrow [NEGKNOW]$
- (12) al-liknow-caus 'let know, inform'

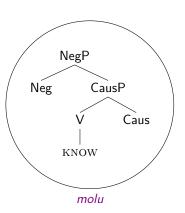
- (10) The Modified Subset Principle
 The phonological exponent of a Vocabulary Item is inserted into a **node** if the item matches all or only a subset of the grammatical features specified in the **node**.
- (11) $molu \Leftrightarrow [NEGKNOW]$
- (12) al-li- CausP know-caus 'let know, inform' V Caus | | KNOW -li


- (10) The Modified Subset Principle
 The phonological exponent of a Vocabulary Item is inserted into a **node** if the item matches all or only a subset of the grammatical features specified in the **node**.
- (11) $molu \Leftrightarrow [NEGKNOW]$
- (12) al-liknow-caus
 'let know, inform'

 Neg CausP


 V Caus

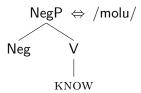
 |
 KNOW -li


- (10) The Modified Subset Principle
 The phonological exponent of a Vocabulary Item is inserted into a **node** if the item matches all or only a subset of the grammatical features specified in the **node**.
- (11) $molu \Leftrightarrow [NEG KNOW]$
- (12) al-liknow-caus 'let know, inform'

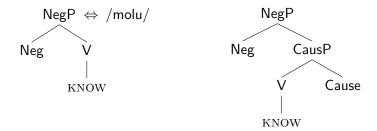
- (10) The Modified Subset Principle
 The phonological exponent of a Vocabulary Item is inserted into a **node** if the item matches all or only a subset of the grammatical features specified in the **node**.
- (11) $molu \Leftrightarrow [NEG KNOW]$
- (12) al-liknow-caus 'let know, inform'
- (13) *molu (-li) -ess -ta neg+know -caus -past -decl 'did not /could not inform'

- (10) The Modified Subset Principle
 The phonological exponent of a Vocabulary Item is inserted into a **node** if the item matches all or only a subset of the grammatical features specified in the **node**.
- (11) $molu \Leftrightarrow [NEG KNOW]$
- (12) al-liknow-caus 'let know, inform'
- (14) mos al-li-ess-ta neg know-caus-past-decl 'did not /could not inform'

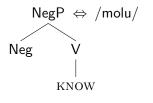
Syncretism

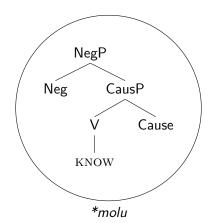

Portmanteau

The Subset Principle

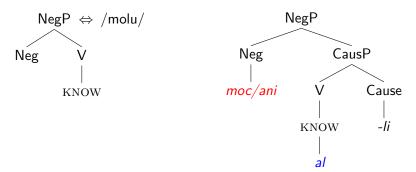

The Superset principle

(15) The Superset Principle
A lexically stored tree L matches a syntactic node S iff L contains the syntactic tree dominated by S as a subtree.


(15) The Superset Principle
A lexically stored tree L matches a syntactic node S iff L
contains the syntactic tree dominated by S as a subtree.



(15) The Superset Principle
A lexically stored tree L matches a syntactic node S iff L
contains the syntactic tree dominated by S as a subtree.



(15) The Superset Principle
A lexically stored tree L matches a syntactic node S iff L contains the syntactic tree dominated by S as a subtree.

(15) The Superset Principle
A lexically stored tree L matches a syntactic node S iff L
contains the syntactic tree dominated by S as a subtree.

Syncretism

Portmanteau

The Subset Principle

The Superset principle

- Both principles can give an account of syncretism
- ► The Superset Principle can also inform us when portmanteau morphemes are possible and when they are impossible

References I

Chung, Inkie. 2007. Suppletive negation in Korean and distributed morphology. *Lingua* 117. 95–148.

Halle, Morris. 1997. Impoverishment and fission. In Benjamin Bruening, Y. Kang & Martha McGinnis (eds.), Papers at the interface, vol. 30 MIT Working Papers in Linguistics. 425 – 449. Cambridge, Mass.