Detailed Information on Publication Record
2020
Genetic diversity, evolution and selection in the major histocompatibility complex DRB and DQB loci in the family Equidae
KLUMPLEROVA, Marie, Petra SPLICHALOVA, Jan OPPELT, Jan FUTAS, Aneta KOHUTOVÁ et. al.Basic information
Original name
Genetic diversity, evolution and selection in the major histocompatibility complex DRB and DQB loci in the family Equidae
Authors
KLUMPLEROVA, Marie (203 Czech Republic), Petra SPLICHALOVA (203 Czech Republic), Jan OPPELT (203 Czech Republic, belonging to the institution), Jan FUTAS (203 Czech Republic), Aneta KOHUTOVÁ (703 Slovakia, belonging to the institution), Petra MUSILOVA (203 Czech Republic), Svatava KUBICKOVA (203 Czech Republic), Roman VODICKA (203 Czech Republic), Ludovic ORLANDO and Petr HORIN (203 Czech Republic)
Edition
BMC Genomics, LONDON, BioMed Central, 2020, 1471-2164
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10603 Genetics and heredity
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 3.969
RIV identification code
RIV/00216224:14110/20:00118279
Organization unit
Faculty of Medicine
UT WoS
000576982800002
Keywords in English
Major histocompatibility complex; Family Equidae; MHC exon 2; MHC class II loci; Positive selection; Trans-species polymorphism; Selected amino acid sites
Tags
International impact, Reviewed
Změněno: 17/3/2021 14:05, Mgr. Tereza Miškechová
Abstract
V originále
Background: The mammalian Major Histocompatibility Complex (MHC) is a genetic region containing highly polymorphic genes with immunological functions. MHC class I and class II genes encode antigen-presenting molecules expressed on the cell surface. The MHC class II sub-region contains genes expressed in antigen presenting cells. The antigen binding site is encoded by the second exon of genes encoding antigen presenting molecules. The exon 2 sequences of these MHC genes have evolved under the selective pressure of pathogens. Interspecific differences can be observed in the class II sub-region. The family Equidae includes a variety of domesticated, and free-ranging species inhabiting a range of habitats exposed to different pathogens and represents a model for studying this important part of the immunogenome. While equine MHC class II DRA and DQA loci have received attention, the genetic diversity and effects of selection on DRB and DQB loci have been largely overlooked. This study aimed to provide the first in-depth analysis of the MHC class II DRB and DQB loci in the Equidae family. Results: Three DRB and two DQB genes were identified in the genomes of all equids. The genes DRB2, DRB3 and DQB3 showed high sequence conservation, while polymorphisms were more frequent at ORB1 and DQB1 across all species analyzed. DQB2 was not found in the genome of the Asiatic asses Equus hemionus kulan and E. h. onager. The bioinformatic analysis of non-zero-coverage-bases of DRB and DQB genes in 14 equine individual genomes revealed differences among individual genes. Evidence for recombination was found for DRB1, DRB2, DQB1 and DQB2 genes. Trans-species allele sharing was identified in all genes except ORB1. Site-specific selection analysis predicted genes evolving under positive selection both at DRB and DQB loci. No selected amino acid sites were identified in DQB3. Conclusions: The organization of the MHC class II sub-region of equids is similar across all species of the family. Genomic sequences, along with phylogenetic trees suggesting effects of selection as well as trans-species polymorphism support the contention that pathogen-driven positive selection has shaped the MHC class II DRB/DQB sub-regions in the Equidae.
Links
ED1.1.00/02.0068, research and development project |
| ||
LQ1601, research and development project |
|