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Introduction

Stroke is one of the leading causes of death and disability world-

wide.1 It is also one of the most frequent causes of dementia and 
epilepsy. Moreover, the incidence of stroke will be increasing be-
cause of population aging.1 The impact of stroke on modern so-
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Despite recent advances in recanalization therapy, mechanical thrombectomy will never be a 
treatment for every ischemic stroke because access to mechanical thrombectomy is still limited in 
many countries. Moreover, many ischemic strokes are caused by occlusion of cerebral arteries that 
cannot be reached by intra-arterial catheters. Reperfusion using thrombolytic agents will therefore 
remain an important therapy for hyperacute ischemic stroke. However, thrombolytic drugs have 
shown limited efficacy and notable hemorrhagic complication rates, leaving room for improvement. 
A comprehensive understanding of basic and clinical research pipelines as well as the current status 
of thrombolytic therapy will help facilitate the development of new thrombolytics. Compared with 
alteplase, an ideal thrombolytic agent is expected to provide faster reperfusion in more patients; 
prevent re-occlusions; have higher fibrin specificity for selective activation of clot-bound 
plasminogen to decrease bleeding complications; be retained in the blood for a longer time to 
minimize dosage and allow administration as a single bolus; be more resistant to inhibitors; and be 
less antigenic for repetitive usage. Here, we review the currently available thrombolytics, strategies 
for the development of new clot-dissolving substances, and the assessment of thrombolytic 
efficacies in vitro and in vivo.
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cieties is and will be enormous because of loss of lives, loss of 
quality of life of surviving patients and their families, and its 
huge socioeconomic burden.

Until 2014, the only evidence-based therapy to reverse the 
neurological deficit in acute ischemic stroke was the adminis-
tration of intravenous tissue plasminogen activator (tPA) within 
4.5 hours from symptom onset.2 Since 2015, several studies 
have demonstrated the substantial benefits of mechanical 
thrombectomy in patients with acute stroke due to large vessel 
occlusion.3-5 Despite the advances in recanalization therapy, ap-
proximately half of patients with severe ischemic stroke remain 
disabled or die.3-5 Moreover, access to mechanical thrombectomy 
is quite limited in many countries owing to lack of resources or 
experts.6 Furthermore, mechanical thrombectomy will never be 
a treatment for every ischemic stroke because many of them are 
caused by occlusion of cerebral arteries that cannot be reached 
by intra-arterial catheters.

To address these needs, various non-interventional treatments 
are being developed, as described recently.7 Thrombolytics, com-
pared with other treatments, appear to hold greater promise for 
stroke management since they have already demonstrated clin-
ically proven therapeutic utility. However, thrombolytics have 
shown relatively limited efficacy and notable hemorrhagic com-
plication rates, leaving room for improvement. In this article, we 
summarize the currently available thrombolytics, including their 
advantages and shortcomings, and describe strategies for devel-
oping and testing principally new thrombolytics in pre-clinical 
and clinical settings. A comprehensive understanding of basic 
and clinical research pipelines and the current status of throm-
bolytic therapy will help facilitate the development of new 
thrombolytics.

Current thrombolytics

Tissue plasminogen activator 

Molecular structure of tPA
tPA was discovered in animal tissues in 1947 and successfully 
purified in 1979.8 tPA is synthesized as a single-chain protein, 
but can be converted into a two-chain form by plasmin or 
kallikreins without loss of fibrinolytic efficiency.9 It is secreted by 
vascular endothelial cells, glial cells, and neurons.10-12 tPA con-
sists of five functional domains (Figure 1): (1) a fibronectin-like 
or finger domain (F, 4–50 amino acids [AA]), (2) an epidermal 
growth factor (EGF)-like domain (E, 50–87 AA), (3) a kringle 1 
domain (K1, 87–176 AA), (4) a kringle 2 domain (K2, 176–256 
AA), and (5) a catalytic serine protease domain (P, 276–527 
AA).13 tPA binds to fibrin through its F, K2, and probably, K1 do-

mains, while its F and E domains are responsible for a fast clear-
ance by hepatocytes.14,15 The average half-life of tPA in plasma is 
approximately 6 minutes.16 Carbohydrate chains, which are con-
nected to tPA via three N-glycosylation sites at residues 117, 
184, and 448, and one O-fucosylation site at Thr61, influence 
the clearance efficiency and plasma half-life.17,18

Biological function of tPA
tPA is a serine protease that converts plasminogen into active 
plasmin, which can degrade fibrin clots.19 Moreover, it also reg-
ulates many other physiological processes, such as neuronal mi-
gration, neurite outgrowth, glutamatergic neurotransmission, 
long-term potentiation, synaptic plasticity, and neurovascular 
coupling.20-26

Clinical use of tPA 
Clinical research has mostly revolved around alteplase, a recom-
binant form of tPA, which is still the only Food and Drug Admin-
istration (FDA)-approved thrombolytic drug for the treatment of 
acute ischemic stroke. It was approved by the FDA for the man-
agement of acute myocardial infarction in 1987, acute massive 
pulmonary embolism in 1990, and acute ischemic stroke in 
1996.27 In a meta-analysis of individual patient data from 6,756 
patients in nine randomized trials comparing with a placebo or 
open control, alteplase significantly increased the odds of a good 
outcome when given within 4.5 hours after ischemic stroke. There 
was an absolute increase of approximately 2% in the risk of ear-
ly death caused by intracranial hemorrhage, although it was off-
set by an increase in disability-free survival. The rates of al-
teplase-mediated recanalization can be as low as 5% to 10% for 
proximal large vessel occlusion, although they are much higher 
for more distal occlusions.28

Protein engineering of alteplase
Many attempts have been made to improve biochemical prop-
erties of alteplase by protein engineering to construct different 
variants, for example, monteplase (with a mutation Cys84Ser in 
the EGF domain),29 lanoteplase (with a mutation Asn117Gln in 
the K1 domain),30 pamiteplase (with K1 domain deleted and a 
mutation Arg275Glu),31 and amediplase (with K2 domain from 
tPA and P domain from urokinase).32 A detailed description of 
the domains is presented in Figure 1.33-36 All these drugs have 
prolonged plasma half-life but decreased fibrin specificities. In 
contrast, tenecteplase (TNK), which is generated by a few point 
mutations, has a longer plasma half-life and a 14-fold higher 
fibrin specificity owing to the substitution of Thr103Asn (intro-
ducing glycosylation site), Asn117Gln (deleting glycosylation 
site), and Lys296-His297-Arg298-Arg299 with four alanines.37 
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The latter substitutions decrease plasminogen activator inhibi-
tor 1 (PAI-1) inhibition up to 80-fold.37 Clinical trials with TNK 
have revealed a decrease in bleeding complications.38

Urokinase
Urokinase was discovered in human urine in 1947.39 It is pro-
duced by vascular endothelial cells, smooth muscle cells, epi-
thelial cells, fibroblasts, monocytes/macrophages, and various 
types of cancer cells.40-44 The enzyme is involved in a variety of 

physiological processes, such as cell migration, tissue remodel-
ing, complement activation, pro-hormone conversion, and 
wound healing.45 Urokinase is a serine protease, which consists 
of three domains: (1) an EGF-like domain (E, 1–49 AA), (2) a 
kringle domain (K, 50–131 AA); and (3) a catalytic serine prote-
ase domain (P, 159–411 AA) with a catalytic triad His204, 
Asp255, and Ser356.46 Urokinase is cheaper than alteplase and 
widely used for the treatment of ischemic stroke in developing 
countries.47 In developed countries, urokinase is clinically used 
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Figure 1. Molecular structure and fibrinolytic function of tissue plasminogen activator (tPA). (A) The F domain (green) is involved in binding to fibrin, which 
stimulates the activity of tPA. Binding of F and epidermal growth factor (EGF)-domain (violet) to the low-density lipoprotein receptor-related protein 1 (LRP1) 
receptor on the surface of a hepatocyte is involved in the clearance of tPA. The K1 domain (orange) is homologous to the K domains of urokinase and des-
moteplase, and glycosylation at Asn117 on the K1 domain influences tPA uptake in the liver.34 The K2 domain (red) has a lysine-binding site, which binds to 
partially degraded fibrin and other proteins containing C-terminal lysines. This could be the basis of enhancement of plasminogen activating activity of tPA by 
interacting with cofactors other than fibrin. The trypsin-like serine protease P domain (steelblue) is responsible for the catalytic activity of tPA. Upon tPA bind-
ing to fibrin, the catalytic activity is increased by both colocalization of plasminogen and conformational change of tPA into a more active state. (B) Carbohy-
drate chains (white+red) affect the half-life of tPA by interacting with the mannose receptor and asialoglycoprotein receptor on the endothelial cells in the 
liver.33,35 In addition, carbohydrate chains influence the catalytic activity by preventing interactions between the domains of tPA.35 (C) The cartoon in the lower 
right panel illustrates the mechanism of tPA-mediated fibrinolysis in thrombi and circulating blood. Fibrinolysis (1º) occurs after tPA binds to fibrin-associated 
plasminogen (PLG) on the surface of the clot by generating plasmin (PLA), and thereby breaking the cross-links between fibrin molecules. PLA could also break 
down circulating fibrinogen (2º), and thus potentially causing bleeding complications. Plasmin activity is inhibited by α2-antiplasmin. Images of molecular 
structures of tPA that were adapted from Mican et al.,36 with permission from the Elsevier.
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for treating deep venous thrombosis and peripheral arterial oc-
clusive disease. Urokinase was approved by the FDA for the sys-
temic treatment of pulmonary embolism48 and catheter-direct-
ed treatment of acute myocardial infarction.49,50

Streptokinase
Streptokinase was discovered in β-hemolytic streptococci in 
1933.51 This indirect plasminogen activator is naturally involved 
in the propagation of streptococcal infections via the break-
down of restraining fibrin barriers.52 It is approved by the FDA 
for acute myocardial infarction, pulmonary embolism, deep vein 
thrombosis, and arterial thrombosis treatments.

Staphylokinase
As another indirect plasminogen activator of bacterial origin, 
staphylokinase is secreted by lysogenic Staphylococcus aureus.53 
This protein generates plasmin only on the fibrin clot surface 
because of the rapid inhibition of free plasmin by its inhibitor 
α2-antiplasmin.54 Staphylokinase also prefers conformation of 
the fibrin-bound plasminogen: only a small percentage associ-
ates with free molecules, but the main fraction strongly inter-
acts with the fibrin-bound ones.55 These features help prevent 
bleeding complications. Successful clinical application of 
staphylokinase for thrombolysis has been confirmed by the Col-
laborative Angiographic Patency Trial of Recombinant Staphy-
lokinase (CAPTORS) I and II trials in patients with acute ST-ele-
vation myocardial infarction.56,57

Desmoteplase
Blood-sucking animals are a useful source of naturally evolved 
plasminogen activators. Desmoteplase, a 50 kDa serine prote-
ase, was discovered in the saliva of the vampire bat Desmodus 
rotundus in 1974.58 Desmoteplase consists of four functional 
domains: (1) a fibronectin-like or finger domain (F), (2) an EGF-
like domain (E), (3) a kringle 1 domain (K1), and (4) a catalytic 
serine protease domain (P). The last one contains three catalytic 
AAs involved in the proteolysis: His237, Asp296, and Ser393.59 
Desmoteplase adopts an open conformation upon binding to fi-
brin via the F domain, which increases its plasmin generating 
activity approximately 100,000-folds, the highest value among 
all thrombolytics discovered so far.60 Substitution of the al-
teplase F-domain with the corresponding domain of des-
moteplase and the removal of the K2 domain increased the af-
finity to fibrin by 1.2-fold and provided fibrin stimulatory effect 
of up to 1,560 times.61 A similar F-domain replacement and de-
letion of the lysine binding site of the K2 domain resulted in a 
1.2-fold greater affinity to fibrin and a 14-fold higher fibrin 
stimulatory effect.61,62 Clinical trials, such as Desmoteplase in 

Acute Ischemic Stroke (DIAS)63 and Dose Escalation of Des-
moteplase in Acute Ischemic Stroke (DEDAS), have revealed that 
desmoteplase has high recanalization (up to 53.3% in patients 
treated with 125 µg/kg desmoteplase) and low intracranial 
hemorrhage (0%) rates.64 DIAS-2 and DIAS-3 trials have con-
firmed that it is a safe thrombolytic drug.65

Development of novel thrombolytics

Characteristics of “ideal” thrombolytics
Enzymatic thrombolysis has revolutionized the therapy of cardio-
vascular and cerebrovascular diseases; early treatment (1) restores 
blood flow in the occluded vessels, (2) reduces the damage of sur-
rounding tissues, and thus (3) increases survival rates.46 The “ideal” 
thrombolytic drugs should (1) provide fast reperfusion in all pa-
tients, (2) prevent reocclusions, (3) have high fibrin specificity for 
selective activation of clot-bound plasminogen to decrease bleed-
ing complications, (4) be retained in the blood for a long time to 
minimize dosage and allow administration as a single bolus vs. 
continuous infusion, (5) be resistant to inhibitors, and (6) be 
non-antigenic for repetitive usage.66

Shortcomings of current thrombolytics
Current FDA-approved thrombolytic drugs, such as streptoki-
nase, urokinase, and alteplase, have several limitations, restrict-
ing the overall success rates of the treatments. Streptokinase 
has low fibrin specificity and causes an immune response in 
host organisms. Urokinase degrades not only fibrin clots but 
also fibrinogen and other plasma proteins, leading to systemic 
fibrinolysis and increased rates of bleeding complications.47 Ow-
ing to low fibrin specificity, urokinase is not used for thromboly-
sis in stroke treatments. Instead, it is widely used for thrombo-
lytic therapy of deep venous thrombosis, peripheral arterial oc-
clusive disease, and pulmonary embolism,48,67,68 as described 
previously. It was also found to be effective for the restoration 
of patency in intravenous catheters occluded by clotted blood.69

Alteplase has a short plasma half-life (approximately 6 min-
utes), but it was shown to be effectively (approximately 550-
fold) stimulated by fibrin.70 In fibrin-bound plasminogen, the 
target peptide bond becomes available because of conforma-
tional changes after lysine-dependent binding to fibrin.71 These 
mechanisms make alteplase a safer thrombolytic drug in com-
parison with streptokinase and urokinase. Thus, it has a wider 
spectrum of FDA-approved clinical applications: it is used for 
the treatment of ischemic stroke, acute myocardial infarction, 
and pulmonary embolism.27,72 However, in ischemic stroke trials 
the recanalization rate following alteplase administration was 
<10% within 1 hour, <35% within 2 hours, and <43% within 
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24 hours.73-75 In approximately 3% to 6% of patients, alteplase 
treatments have led to intracerebral hemorrhage (ICH).76,77 
The major predictive factors for alteplase failure were a bigger 
thrombus size, poor collaterals, a proximal location of thrombus, 
or prolonged time to treatment.78-80 In patients with acute isch-
emic stroke due to the middle cerebral artery (MCA) occlusion, 
intravenous alteplase was shown to recanalize the artery when 
the length of thrombus did not exceed 8 mm.79 The recanaliza-
tion rate following alteplase treatment for thrombi with a distal 
location, e.g., distal M1 MCA was approximately 4.5 times high-
er than for those located at the internal carotid artery (46.4% 
and 10.9%, respectively).80

Methods for developing novel thrombolytics
Many strategies are used to develop novel drugs that lack the 
aforementioned shortcomings of currently used thrombolytic 
agents (Figure 2). The well-traveled path of finding molecules 
with thrombolytic activity in different organisms was followed 
by molecular biology methods to facilitate their discovery, such 
as construction of fusion proteins or substitution mutagenesis. 
Computational methods have been widely used in recent years. 

Discovery of new molecules
Many enzymes and small molecules found in nature have 

thrombolytic activity. Several thrombolytics have been devel-
oped by the identification and characterization of molecules 
found in bacteria, such as the fibrin-specific thrombolytics from 
Streptococcus uberis,81 Bacillus,82 or Stenotrophomonas.83 A sig-
nificant effort is invested into nattokinase—a thrombolytic 
agent originating from Bacillus subtilis found in the fermented 
soybean food natto.84 Other sources of thrombolytics are various 
eukaryotes, such as the Chlorella alga,85 venomous snakes,86,87 
and polychaetes.88 Thrombolytics of non-mammal origin are of-
ten direct fibrinolytics that cleave fibrin directly instead of acti-
vating plasminogen. The discovery of new thrombolytics can 
greatly benefit from next-generation sequencing technologies 
and gene-mining software tools.89 Small molecules such as tri-
prenyl phenolic compounds from the Stachybotrys mold pro-
mote the binding of plasminogen to fibrin and induce a confor-
mational change in plasminogen, which promotes its activation 
and thus fibrinolysis.90

Domain deletion
As mentioned before, alteplase is a protein with five exons cod-
ing for the domains of different functions.91 Besides fibrinolysis, 
these domains are associated with neurological side effects such 
as blood-brain barrier dysfunction, N-methyl-D-aspartate recep-
tor (NMDAR)-mediated neurotoxicity, and other neurological 

Figure 2. Scheme depicting the development of novel thrombolytics. The overall workflow is separated into four main steps, which are thoroughly discussed 
in the main text. (A) Development of novel molecules using protein engineering. (B) In vitro testing by biochemical assays. (C) In vivo testing in animal models. 
(D) Several phases of clinical testing. F, finger domain; EGF, epidermal growth factor-like domain; K1, kringle 1 domain; K2, kringle 2 domain; P, protease do-
main; RGD, arginine (R), glycine (G), aspartic acid (D); TTI, tsetse thrombin inhibitor; SAK, staphylokinase; SPR, surface plasmon resonance; mCT, micro com-
puted tomography; MRI, magnetic resonance imaging; ICH, intracerebral hemorrhage; mRS, modified Rankin Scale; NIHSS, National Institutes of Health 
Stroke Scale.
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functions.92-94 The first three domains interact with the mannose 
receptor and low-density lipoprotein receptor-related protein 1, 
which are related to tPA clearance by endothelial cells and he-
patocytes, respectively.33,95,96 Reteplase, a deletion mutant of al-
teplase, lacks the finger, EGF-like, and kringle 1 domains. It has a 
long half-life of 15 minutes owing to the absence of the domains 
responsible for receptor-mediated clearance. Compared with al-
teplase, reteplase has lower fibrin-binding and better clot pene-
trability, which leads to faster and more uniform thrombolysis 
and fewer reocclusions. Owing to the lack of glycosylation and 
fewer disulfide bridges, reteplase can be expressed at a lower 
cost using a prokaryotic system.97 

Protein chimerization
In contrast to avoiding unwanted functions by the aforemen-
tioned domain deletions, constructing chimeric proteins by fus-
ing different proteins or their domains can couple more func-
tions within a single protein. Fibrin-specificity can be achieved 
through the fusion of EGF domains of thrombomodulin or the K2 
domain of alteplase on streptokinase.98,99 A drug such as staphy-
lokinase can become both thrombolytic and anticoagulative 
through the fusion of the arginine-glycine-aspartate tripeptide 
motif, hirudin, annexin XI, or the tsetse thrombin inhibitor.100-103 
Fusion of the fibrin-binding kringle 1 domain of plasminogen on 
staphylokinase increased fibrinolytic effectivity.104 Fusion of the 
Gly-His-Arg-Pro (GHRP) peptide that has a binding affinity for 
fibrinogen enhanced the fibrin affinity of alteplase.105,106 In addi-
tion, greater fibrin specificity was achieved by substituting the 
fibrin-binding fibronectin-like domain of alteplase with the 
analogous domain of desmoteplase.61 Another interesting ap-
proach is the fusion of microplasmin and the activation-specific 
anti-glycoprotein IIb/IIIa antibody. In this way, fibrinolysis by mi-
croplasmin is targeted to the clot. Microplasmin is far less inhib-
ited by α2‐antiplasmin than plasmin in the blood.107

Point mutations
The very short half-life of streptokinase can be extended up to 
21-fold by substituting specific charged residues responsible for 
its proteolysis or by PEGylation (the process of attaching poly-
ethylene glycol [PEG] polymer to molecules).108-110 Staphyloki-
nase can be induced to have reduced immunogenicity (30%) or 
improved fibrinolytic effectivity by substituting only a few spe-
cific residues and using PEGylation.111,112 Alteplase can be made 
resistant to PAI-1 by mutating four charged residues in the cat-
alytic domain to alanine. This mutation, combined with two 
more substitutions to alleviate low-density lipoprotein-like re-
ceptor 1-mediated clearance, provides TNK, which has a 4-fold 
increased half-life, with more resistance to PAI-1 and higher fi-

brin specificity compared with alteplase. These properties make 
TNK a promising new thrombolytic drug for treating ischemic 
stroke.113 Single point mutations have been introduced in tPA to 
attenuate its NMDAR-mediated neurotoxicity.114 Others showed 
that alteplase can be made 28-fold more fibrin specific by sub-
stituting the plasmin-sensitive cleavage site with that of des-
moteplase.60 Recently, Goulay et al.115 engineered a variant of 
tPA devoid of its interaction with the NMDAR by substituting 
tryptophan 253 in the kringle 2 domain with arginine. They also 
introduced another point mutation to reduce tPA sensitivity to 
plasmin without affecting its fibrinolytic activity: a substitution 
of arginine 275 with serine. In a rat model of ICH and cathe-
ter-delivered in situ thrombolysis for the drainage of ICH, the 
variant tPA reduced hematoma volume. Furthermore, unlike al-
teplase, the mutant tPA also reduced peri-hematomal neuronal 
death and edema progression, probably due to the lack of pro-
motion of NMDA-dependent neurotoxicity.115 Urokinase became 
fibrin-specific with fewer bleeding complications by introducing 
point mutations.116

Liposomes and encapsulation
Encapsulation of thrombolytics in liposomes or other nanoma-
terials offers interesting opportunities for improving thrombo-
lytic therapy. Liposomes are spherical particles delimited by a 
lipid bilayer, with a size ranging from 30 nm to several microm-
eters. Inside the bilayer-delimited sphere, there is an aqueous 
phase in which therapeutic molecules, including thrombolytics, 
can be encapsulated. Other encapsulation techniques are used: 
encapsulation in blood cell-derived membranes or poly-
mer-based nanoparticles.

Encapsulation in liposomes can significantly improve the 
half-life of thrombolytics by preventing interactions with 
clearance receptors in the bloodstream. It also limits systemic 
plasminemia by preventing the interaction of encapsulated 
thrombolytics with plasminogen not located in the thrombus.117 
The half-life and binding properties can be gradually tuned by 
engineering the composition of liposomes by altering the ratio 
of different phospholipids in their bilayer, coating them with 
ligands, or performing PEGylation.118 		

The half-life of liposomal streptokinase is 16-fold longer.117 
The half-life of tPA was prolonged 21-fold by encapsulation in 
liposomes.119 Besides increasing the half-life, liposomes can also 
provide other useful pharmacokinetic properties. The accumu-
lation of PEGylated liposomes occurred in two different thera-
peutic windows of 0.5 and 48 hours after stroke.120 The accu-
mulation of liposomes occurred through transcellular transport 
during the first window and trans- and para-cellular pathways 
during the second window.120 This could be used to provide tar-
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geted therapeutic action both spatially and temporally.
Liposomes themselves prevent immunogenicity and have an-

ti-inflammatory properties. These properties are even more pro-
nounced when they are loaded with anti-inflammatory or neu-
roprotective agents.121,122 Encapsulation of dexamethasone or a 
combination of tPA and cyclosporine A in liposomes improved 
neurological scores and reduce subsequent neuroinflammation 
in rat models of ischemic stroke.

One of the most sought-after properties of liposomes and 
other nanoformulations is their ability to target thrombolytics 
to the clot. Liposomes decorated with a fibrinogen-mimicking 
peptide and loaded with urokinase bind to platelets with high 
specificity.123 Urokinase encapsulated in liposomes decorated 
with this peptide produced a thrombolytic effect in a rat mes-
enteric thrombosis model with only 25% of the dose of free 
urokinase, and showed significantly less prolonged bleeding 
times than free urokinase.124 Targeted liposomes loaded with 
urokinase showed improved thrombolytic efficacy in a rat em-
bolic stroke model, too.124

Thrombolytic action in the clot can also be achieved through 
targeted release using ultrasound, infrared radiation, tem-
perature, or shear stress-activated liposomes and other nan-
otherapeutics.117,125-127 The use of echogenic liposomes loaded 
with thrombolytics couples the diagnostic and therapeutic 
procedures and was shown to enhance thrombolytic potency.117 
Loading thrombolytics into blood cell membrane-based particles 
showed improved therapeutic efficacy over free thrombolytics 
in animal ischemic stroke and thrombosis models, while pre-
serving coagulation profiles and having fewer bleeding compli-
cations.128,129 Blood cell membrane-based nanoparticles coated 
with tPA have led to a significantly better neurological score 
and survival rate, with a practically unchanged coagulation pro-
files. Although many studies are exploring the encapsulation of 
thrombolytics in stroke treatment,117,118 the translation to clini-
cal practice is still pending.

Rational protein design
Determination of the crystal structures of thrombolytic enzymes 
and using them for in silico modeling have led to big leaps in 
the development of thrombolytic agents.36 The knowledge of 
the structure of staphylokinase has led to the identification of 
sites for PEGylation that could improve the half-life while pre-
serving the effectivity of staphylokinase. The effect of mutations 
on streptokinase can be studied and predicted using the crystal 
structure of streptokinase bound to microplasmin.130 The com-
plete structure of alteplase has not been fully elucidated. How-
ever, in silico predictions using the low-resolution structures of 
alteplase could estimate how deleting any domain decreases its 

catalytic activity or how it is influenced by glycosylation or en-
hanced by fibrin.35,131 Establishing the structure of reteplase by 
homology modeling based on alteplase led to improvement in 
the solubility and fibrin affinity of reteplase.132

Each candidate thrombolytic agent should be characterized 
in vitro and in vivo and compared with previous ones. Choosing 
efficient and effective experimental methods is important for 
characterization. The choice often poses a tradeoff between 
the efficiency and thoroughness of testing. A good in vitro 
testing strategy can screen more molecules and provide a high-
er chance of finding a good hit, while also testing candidate 
thrombolytics for many of the biophysical, biochemical, and 
biological aspects that are required to be a successful thrombo-
lytic agent.

In vitro testing of novel thrombolytics

In vitro testing of thrombolytics is typically based on the physi-
ological fibrinolytic pathway (Figure 3A); however, individual 
assays differ in the level of their complexity, analysis time, re-
producibility, and the targeted property.133,134 Since none of 
these methods is superior, it is necessary to always choose the 
most relevant ones for a given purpose. To obtain a complex 
understanding of the studied thrombolytics, a combination of 
different methods may need to be used. An overview of the 
available assays is provided in Table 1.

 
Enzymatic activity assays
Numerous methods for the assessment of the fibrinolytic poten-
tial of thrombolytic proteins are available, ranging from the his-
toric radiolabeling70,135-140 to more advanced methods, such as 
the euglobulin lysis assay, clot formation and lysis (CloFAL) as-
say, and streptokinase-activated lysis time (SALT) assay.141-143 
Three basic principles are applied in most of the developed as-
says.

 

Fibrin plate assay
The fibrin plate assay relies on the physiological fibrinolytic 
pathway (Figure 3A). The plates are prepared by mixing melted 
agarose with plasminogen, thrombin, and fibrinogen. When a 
thrombolytic agent is added, fibrin dissolution is assessed by 
measuring the extent of the clear zone.144-147 This method uses 
fibrin as a key component, making the assay more natural than 
the chromogenic/fluorogenic assay (see below), while still pro-
viding robust and reproducible results. In contrast, the fibrin 
plate assay is more laborious and time-consuming. Moreover, 
the growth of the zones depends not only on the fibrinolytic 
activity but also on the diffusibility of the tested thrombolytics. 
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Modified methodologies, such as the dyed fibrin plate assay148 

and fibrin microplate assay,149 have been developed to resolve 
some of these problems.

Chromogenic/fluorogenic substrate assay
This method is based on the cleavage of a synthetic chromo-
genic or fluorogenic peptide substrate by a thrombolytic en-
zyme (Figure 3B and C), releasing a free chromophore or a flu-
orophore and thus generating a measurable spectroscopic sig-
nal.150-157 The assay is fast, highly reproducible, and depends 
solely on the activity of the tested enzyme. However, the assay 
does not use fibrin, a key component influencing thrombolytic 
activity. To account for the stimulatory effect of fibrin, it is 
possible to add a small fibrin clot, fibrinogen, or fibrin frag-
ments into the reaction mixture.60,158-161 The synthetic substrate 
can be cleaved directly by plasminogen activators (Figure 
3B),152,155-157 or in a coupled arrangement. A thrombolytic drug 

first activates the natural substrate plasminogen to plasmin, 
which subsequently processes an analogical chromogenic/fluo-
rogenic substrate (Figure 3C).153,156,157 The use of the coupled 
arrangement makes the analysis more reliable.

Clot lysis assay
In this assay, macroscopic clots are prepared either by mixing 
thrombin with plasminogen and fibrinogen,162,163 or clotting hu-
man plasma or blood.141-143,164-170 Thrombolytics-induced lysis 
can be roughly monitored visually to report the complete clot 
lysis time141,142,162-164 or more accurately, by the change in 
clot-related light scattering.141,143,169,171 Other options include 
measuring (1) the release of red blood cells (RBCs) from whole 
blood clots,165,166,172,173 (2) changes in the clot mass,167,168 (3) the 
viscoelastic properties using thromboelastography,174,175 or (4) 
fluorescence change upon dissolution of labeled clots.176,177 Un-
like the chromogenic/fluorogenic substrate assay and the fibrin 

Figure 3. Overview of thrombolytic enzymatic activity assays. (A) The physiological thrombolytic pathway without any modification can be monitored by fibrin 
plates, providing clear zones through the dissolution of fibrin. (B) Direct chromogenic/fluorogenic assay uses a synthetic substrate instead of plasminogen. The 
assay allows easy and straightforward analysis of thrombolytic enzyme kinetics by a spectrophotometer. The direct cleavage by plasminogen activators results 
in a linear increase of the signal over time. (C) Coupled chromogenic/fluorogenic assay uses a synthetic substrate instead of fibrin, while the analyzed step of 
activation involves the physiological plasminogen substrate. The measurement is thus more robust, reliable, and closer to real thrombolytic events than the 
direct assay. The coupled nature of the assay results in a quadratic increase of the signal over time.
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plate assay, these assays use macroscopic clots, thereby better 
mimicking in vivo biology. However, a higher level of procedural 
complexity decreases the accuracy and reproducibility of this 
assay. In addition, the assays do not solely monitor the enzy-
matic activity of thrombolytics, but rather their overall effec-
tiveness.

Inhibition resistance assays
Inhibition resistance assays are performed by incubating throm-
bolytics with an inhibitor at a predefined concentration for a 
predefined time. Thereafter, the amount of free and active 
thrombolytics is determined using enzyme-linked immunosor-

bent assay (ELISA)178,179 or the chromogenic/fluorogenic as-
say.178,180-182 Such experiments provide information about both 
the kinetics and thermodynamics of inhibition.

Fibrin affinity assays

Fibrin immobilization assay
Fibrin layer or fibrin fragments can be immobilized on sensor 
chips, and the binding of thrombolytic drugs can be directly an-
alyzed using surface plasmon resonance (SPR). This measure-
ment provides information about both the affinity and the ki-
netics of the interaction.183-186 Alternatively, fibrin can be immo-

Table 1. Comparison of the most common assays used for in vitro testing of thrombolytics

Assay Targeted property Pros (+) and Cons (-) Reference
Radiolabeling Activity + Direct substrate and product monitoring

- Handling radioactive materials
- Requiring special training and safety equipment

129,133-138

Fibrin plate assay Activity + More natural than chromogenic and fluorogenic assays (below)
+ High reproducibility
- Long and more laborious analysis
- Results influenced by the diffusibility of tested thrombolytics

144-147

Chromogenic/fluorogenic assay Activity + Precise and highly reproducible
+ No interfering factors
+ Suitable for kinetic analysis
- Absence of fibrin
- Far from the real fibrinolytic process

60,150-161

Clot lysis assay Efficiency + Most realistic in vitro arrangement
+ Presence of real clots, no oversimplification
- Relatively low reproducibility
- Determines only overall thrombolytic efficiency, not individual properties

141-143,162-175,177

Inhibition resistance assay Inhibition resistance + Fast and easy to perform
- Missing other possibly important factors

178-182

Fibrin immobilization SPR Fibrin affinity + Direct measurement of binding
+ Provides both kinetic and equilibrium data
+ Suitable for fast screening
- No macroscopic clots present
- Requiring special instrumentation

183-186

Fibrin immobilization ELISA Fibrin affinity + Easy to set up
+ Does not require special instrumentation
- No macroscopic clots present
- Lack of information about the kinetics

184,186,187

Clot binding assay Fibrin affinity + Not requiring specialized equipment
+ Working with macroscopic clots
- Requiring practice in the generation of reproducible clots
- Longer and more laborious analysis

61,188-190

Receptor immobilization SPR Receptor affinity + Direct measurement of binding
+ Provides both kinetic and equilibrium data
+ Suitable for fast screening
- Requiring special instrumentation

95,191,192

Receptor immobilization ELISA Receptor affinity + Easy to set up
+ Not requiring special instrumentation
- Lack of information about the kinetics

191,193

Receptor binding ITC Receptor affinity + Not requiring immobilization
+ Direct measurement without labeling or modification
- Applicable to fully soluble fragments only

194,195

SPR, surface plasmon resonance; ELISA, enzyme-linked immunosorbent assay; ITC, isothermal titration calorimetry.
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bilized on the surface of a microplate well, incubated with the 
tested thrombolytic agents, and the amount of bound molecules 
is determined by using ELISA or the chromogenic/fluorogenic 
assay.184,186,187

Clot binding assay
To analyze the affinity to macroscopic fibrin clots, fibrinogen is 
mixed with the tested thrombolytic agents, and clotting is initi-
ated by thrombin. The clot is subsequently sedimented using 
centrifugation, and the supernatant is used for measuring the 
amount of unbound thrombolytics using ELISA, the fibrin plate 
assay, or the chromogenic/fluorogenic assay.61,188-190 Although 
this assay requires thorough optimization to obtain reproducible 
results, it uses macroscopic clots and does not require any com-
plex instrumentation.

 
Receptor binding assays
The affinity of thrombolytics to membrane receptors is typically 
determined analogically as the affinity to fibrin layers. One op-
tion is to analyze binding affinities and kinetics using SPR.95,191,192 

An alternative approach is to measure the amount of thrombo-
lytics bound to immobilized receptors using specific antibodies 
(ELISA arrangement) or by the chromogenic/fluorogenic assay 
after a washing step.191,193 In addition, there have been studies 
reporting affinities to soluble receptor fragments, measured by 
isothermal titration calorimetry.194,195

Overall, in vitro methods are useful for assessing the individual 
properties affected by structural modifications of a thrombolytic 
agent. In addition, the assays serve as an important platform for 
screening large libraries of designed drug variants in a cost-ef-
fective, time-efficient, and ethical manner. However, simplifi-
cations and deviations from physiological conditions make it 
essential to further test the safety and efficacy of candidate 
thrombolytics using in vivo animal models.

In vivo testing of novel thrombolytics

Thromboembolic stroke models, in which preformed blood clots 
are injected in arteries, have been generated most often in ro-
dents (rats196-212 and mice177,213-219) and other species including 
rabbits,220-224 dogs,225,226 zebrafish,227 and non-human pri-
mates.228,229 In this section, we summarize the current available 
thromboembolic stroke models and their advantages and disad-
vantages in testing thrombolytic agents. 

Clot injection-induced thromboembolic stroke 
model
Embolic stroke is induced by injecting preformed (autologous or 

heterologous) blood clots into the MCA—anterior cerebral artery 
bifurcation area.230-233 Despite the relatively high mortality due 
to invasive surgical procedures, these animal models closely 
mimic human clots with high variability in the biochemical or 
cellular composition, and size.234 

The biochemical and cellular composition can be manipulated 
by adding fibrin or thrombin to the blood before clotting205 or 
by mixing the blood with RBCs or platelets.235 The diameter or 
length of clots can be controlled by using a clot-forming tube 
or catheter in various diameters, or by cutting clots in differ-
ent lengths.205,212,236 Strict control of the molecular and cellular 
properties of clots could reduce the experimental variability and 
increase the reproducibility in the investigation of thrombolyt-
ic agents. However, spontaneous recanalization or multifocal 
distal embolization after intra-arterial injection and the circle 
of Willis anatomy variations could have variable effects on the 
location and extent of the resulting cerebral infarction. 

We previously showed that the heterogeneous nature of a 
mouse embolic stroke model could be characterized and man-
aged by using a combined approach of in vivo cerebral blood 
flow (CBF) monitoring and ex vivo near-infrared fluorescent im-
aging to visualize thrombus.216,217 More recently, we developed 
fibrin-targeted glycol-chitosan-coated gold nanoparticles (GC-
AuNPs) for computed tomography (CT)-based direct imaging of 
cerebral thromboembolism and carotid thrombosis.217 In a fol-
low-up study, thromboembolic burden and the efficacy of tPA 
therapy could be assessed serially, noninvasively, and quantita-
tively using microCT and the fibrin-targeted AuNPs in mice.237

In situ thrombosis models

Thrombin-induced thromboembolic stroke model
Purified thrombin injection into the lumen of the MCA exposed 
by excising the dura after performing a small craniotomy leads 
to in situ thrombosis, followed by CBF reduction and cerebral 
infarction.230,232,238 Thrombi that were produced by this method 
in Swiss mice consisted mainly of polymerized fibrin containing 
a low number of platelets.232 This composition does not seem to 
accurately reflect that of clots in human ischemic stroke. Ap-
proximately 75% of the clots retrieved using the Merci device 
showed platelet/fibrin accumulation, linear neutrophil/mono-
cyte deposition, and erythrocyte-rich accumulation.239 However, 
another study demonstrated a highly complex ultrastructure of 
human clots with a diverse organization of fibrin, platelets, and 
RBCs within each thrombus and across various thrombi.240 In-
jecting FeCl3 instead of thrombin could generate platelet-rich 
cerebral thrombi, providing an opportunity for studying the in-
fluence of different clot components on the efficacy of a 
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thrombolytic agent.230

Mortality rates are lower owing to the less invasive nature of 
the surgical procedure compared with the intra-arterial clot in-
jection-induced thromboembolic stroke model. In addition, 
site-specific thrombin injection-mediated accurate and consis-
tent clot localization may ensure more reproducible infarct vol-
umes. However, a study characterizing this model in C57 
black/6J mice (n=126) showed that 65% of animals (n=82) 
were excluded because of an unsuitable location of the MCA 
bifurcation for thrombin injection, bleeding complications, or 
spontaneous recanalization within 20 minutes (n=26). Only 44 
animals demonstrated stable clot formation and cortical infarc-
tion. Spontaneous recanalization within 24 hours was observed 
in non-human primates as well as in mice,241 complicating the 
analysis and interpretation of the therapeutic efficacy of a 
thrombolytic agent. Moreover, this model suffers from the diffi-
culty of assessing functional neurological deficits. However, a 
previous study demonstrated the utility of this model for com-
paring the efficacy of alteplase on infarct volume at different 
doses (0.9, 5, and 10 mg/kg) and at different times after stroke 
onset (from 20 minutes to 4 hours). At either high (5 to 10 mg/
kg) or low (0.9 mg/kg) doses of alteplase, early (<3 hours) treat-
ment significantly reduced the final infarct volume, whereas 
late administration showed no effect.242

FeCl3-induced thromboembolic model
Thrombosis is induced by topical application of 2.5% to 35% 
ferric chloride (FeCl3) to the artery or vein after surgically expos-
ing the target vessel. The generally accepted pathomechanism 
of FeCl3-induced thrombosis is oxidative vascular wall injury, 
causing endothelial denudation and in situ thrombosis. As an-
other possible mechanism,243,244 micromolar levels of ferrous 
ions permeate the endothelium, and the ions in the bloodstream 
form agglomerates with platelets, RBCs, and plasma proteins, 
which subsequently induces thrombosis. Activated platelets, fi-
brin strands, and entrapped erythrocytes were found on the en-
dothelial surface of the rat carotid artery 10 minutes after 35% 
FeCl3 application.245 The clot size, degree of vessel occlusion, and 
blood flow reduction can be managed by adjusting the concen-
tration and duration of the FeCl3 application. In a later 
dose-ranging study,246 2.5% FeCl3 applied to the mouse carotid 
artery for 10 minutes was sufficient to occlude blood flow com-
pletely. Topical application of 10% FeCl3 to the distal MCA for 3 
minutes induced thrombus formation, CBF reduction, and isch-
emia without hemispheric swelling, hemorrhage, or mortality by 
24  hours. Because of rapid thrombus formation at a pre-de-
fined location with high reproducibility in the clot size, this 
model has been widely used for cardiovascular research.

Previously, we developed the first hyperacute direct thrombus 
imaging technique using CT and thrombus-seeking GC-AuNPs, 
which enables in vivo assessment of thrombus burden/distribu-
tion and characterization of its evolution promptly and quan-
titatively.247 MicroCT imaging could visualize both the presence 
and extent of thrombi in mouse carotid arteries without a single 
failure of detection. The AuNP thrombus imaging enabled the 
monitoring of thrombus evolution (either spontaneous or post-
tPA), which could be mapped at high resolution in both space 
and time. A long circulating half-life (up to 3 weeks) of GC-
AuNPs allowed for repetition or ongoing monitoring of throm-
bogenesis and thrombolysis without repeated injections of the 
imaging agent.

Photochemical thrombosis model
Intravenous injection of a photosensitive dye (e.g., Rose Bengal 
or erythrosine B) and light illumination to the cortical cerebral 
artery induces in situ thrombosis, CBF reduction, and cerebral in-
farction.248-258 Light can be illuminated through the thinned skull 
of the animal brain without craniotomy. Dye-light interaction 
generates reactive oxygen species that causes endothelial dam-
age and platelet aggregation, leading to the formation of a 
platelet-rich thrombus at the site of the photochemical reaction. 

A recent study using this model252 showed that infarct size 
was not affected by depletion or functional inhibition of plate-
lets. The authors suggested potential mechanisms, such as 
blood-brain barrier disruption-mediated parenchymal edema 
causing secondary vascular compression as well as inflammato-
ry brain damage involving cytotoxic radicals, microglial activa-
tion, and cytokine release.259-261

The major strengths of the photothrombosis model include 
reproducible infarct size and location as well as a relatively sim-
ple surgical procedure and low operative mortality. The infarct 
size can be controlled by changing the concentration of Rose 
Bengal and the duration of light illumination.258,262-269

Poor responses to tPA-mediated thrombolytic therapy, which 
is likely due to a low fibrin content in the platelet-rich clots, 
was improved by increasing the fibrin content by mixing Rose 
Bengal (50 mg/kg) with thrombin (80 U/kg).270

Lu et al.255 showed that photochemical thrombotic stroke 
could be induced in conscious animals. They mounted a wear-
able miniature headstage, which allows for both light illumina-
tion (532 nm) to the MCA and laser speckle contrast imaging271 
on the head of rats. This model better reflects most of the 
clinical stroke, which does not occur in anesthetic conditions, 
providing a unique research platform to study stroke patho-
physiology without the confounding effects of anesthesia. 
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Clinical testing of novel thrombolytics

Alteplase significantly improves post-stroke functional out-
comes; however, potential risks, particularly symptomatic in-
tracranial hemorrhage, can complicate intravenous tPA thera-
py.2,77,272 As described before, TNK compared with alteplase has 
a higher affinity for fibrin and less impairment of hemostasis. 
TNK has greater resistance to PAI-1 and a longer plasma half-
life, allowing single intravenous bolus injection.273 Des-
moteplase is another new thrombolytic agent with a longer 
half-life and higher fibrin specificity than alteplase.65 

In the Australian TNK trial, TNK 0.1 and 0.25 mg/kg, com-
pared with alteplase, were associated with better clinical 
outcomes in 75 patients with large artery occlusion, probably 
due to higher reperfusion rates and more favorable perfusion 
patterns within 6 hours from symptom onset.274 However, 
the Tenecteplase versus Alteplase for Management of Acute 
Ischemic Stroke (NORTEST) study investigators reported no 
difference between TNK 0.4 mg/kg and alteplase in terms of 
the safety and efficacy in 1,100 patients who were eligible for 
IV thrombolysis within 4.5 hours of onset.275 The majority of 
participants had a mild stroke (median National Institutes of 
Health Stroke Scale of 4), which complicates the interpretation 
of the results.

With the advent of endovascular thrombectomy, Extending 
the Time for Thrombolysis in Emergency Neurological Deficits–
Intra-Arterial (EXTEND-IA) TNK trial compared TNK 0.25 mg/kg 
with alteplase in patients with large vessel occlusion who were 
scheduled for thrombectomy. TNK was superior to alteplase 
in the recanalization on the initial angiogram (22% vs. 10%). 
In addition, TNK achieved a more favorable 90-day functional 
outcome in the ordinal analysis of the modified Rankin Scale 
score (common odds ratio, 1.7; P=0.037).73

Clinical trials of desmoteplase selected patients who came 
in late time windows but had salvageable tissue on brain 
imaging. In the Study of DIAS-2 trial, 90 and 125 μg/kg of 
desmoteplase did not increase the clinical response rates at 
90 days compared with the placebo in patients with ischemic 
stroke within 3 to 9 hours after symptom onset.276 The DIAS-
3 trials involved 492 patients with high-grade stenosis or 
occlusion of major cerebral arteries within 3 to 9 hours after 
symptom onset. Desmoteplase (90 μg/kg) and the placebo 
did not differ significantly in terms of the primary outcome: 
the proportion of patients with a favorable modified Rankin 
Scale score (0–2) at 90 days (51% vs. 50%, respectively).65 The 
DIAS-4 trial was terminated early, and the combined results 
of DIAS-3, DIAS-4, and DIAS-J (Japan) were published.277 Late 
treatment with intravenous 90 μg/kg desmoteplase was safe 

with an increased rate of recanalization, although it did not 
significantly improve the functional outcome at 3 months.277 
The limitations of the studies were: (1) focusing on the late 
time window, (2) without consistent application of imaging 
criteria for patient selection, and (3) sample size-related issues 
in DIAS-2 (small sample size) and DIAS-3 (21% patients ex-
cluded from the final analysis).

To date, TNK and desmoteplase are the only drugs that have 
undergone phase II clinical trials. In terms of safety and effi-
cacy, clinical trials did not definitively prove the superiority of 
TNK over alteplase.73,272-275,278,279 A meta-analysis demonstrat-
ed a similar rate of symptomatic intracerebral hemorrhage 
(sICH) between TNK (3%) and alteplase (3%).280 Although two 
trials (Australian TNK and EXTEND-IA TNK) have proven the 
superior efficacy of TNK over alteplase, the meta-analysis did 
not show the overall superiority of TNK. Ongoing large sam-
ple-sized trials (Alteplase-Tenecteplase Trial Evaluation for 
Stroke Thrombolysis [NCT02814409] and Tenecteplase versus 
Alteplase for Stroke Thrombolysis Evaluation TASTE-2 [AC-
TRN12613000243718]) comparing the safety and efficacy of 
TNK versus alteplase may provide more conclusive data.273 Pre-
vious studies suggest that desmoteplase and alteplase might 
have comparable safety and efficacy, although a head-to-head 
study has not been conducted.

As described above, in the Australian TNK and EXTEND-IA 
TNK trials, TNK achieved a higher recanalization rate compared 
with alteplase.274 In TNK-tPA Evaluation for Minor Ischemic 
Stroke With Proven Occlusion (TEMPO-1) trial, TNK demon-
strated a remarkable recanalization rate in patients with mild 
stroke and intracranial arterial occlusion.273 Desmoteplase also 
showed an outstanding recanalization rate in the DIAS-3 tri-
als.65 Thus, it is likely that patients with large vessel occlusion 
due to large or long thrombi may benefit more from recanali-
zation therapy using the new thrombolytics. An ongoing TEM-
PO-2 trial (NCT02398656) may contribute to this issue.

Although the era of endovascular therapy has finally come, 
intra-arterial mechanical thrombectomy cannot and will not 
be performed in all patients with acute ischemic stroke. In-
travenous thrombolysis may facilitate subsequent mechanical 
thrombectomy and can be performed promptly while preparing 
the intra-arterial intervention. Moreover, the chemical lysis of 
microthrombi as well as the mechanical recanalization of large 
arteries is required for optimal cerebral reperfusion, which is 
crucial for improving clinical outcomes. In addition, in the set-
ting of the drip-and-ship approach, a single bolus injection (of 
a new thrombolytic drug) will have a clear logistical advantage 
over the continuous infusion (of tPA).
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Conclusions and perspectives in the 
development of thrombolytics

Despite a large variety of biochemical features of natural and 
engineered thrombolytic enzymes, none have demonstrated 
“optimal” clinical outcomes. A missing piece of information that 
will be useful for the development of more efficient thrombo-
lytics is the complete tertiary structures of alteplase, TNK, and 
desmoteplase. These structures have not been determined so 
far, and computer models do not provide the necessary molecu-
lar details. Particularly, it would be informative to know the 
structures of their complexes with fibrin and/or plasminogen, 
which would allow for more effective engineering of the affinity 
and specificity. We are witnessing improvements in structural 
techniques, such as cryo-electron microscopy, X-ray crystallog-
raphy, and nuclear magnetic resonance (NMR) spectroscopy, 
which can reveal the structures of even large multi-domain and 
multi-protein complexes.

We see a duality in the current trends in the development 
of novel thrombolytics. On the one hand, novel thrombolytics 
are being developed using more precise design strategies. Re-
search and developmental strategies in this field have moved 
from deleting and fusing whole domains of proteins to intro-
ducing point mutations. Researchers are increasingly using the 
methods of rational protein design, which are more specific, 
focused, and reliable. On the other hand, the vastly expand-
ing repertoire of deoxyribonucleic acid sequences and small 
molecules enables the discovery of novel thrombolytics in bio-
logical samples collected from living ecosystems. We envision 
that future thrombolytic formulations can be developed by  
(1) computational rational design that is based on new struc-
tures identified by protein crystallography, NMR spectroscopy, 
and cryo-electron microscopy; (2) discovering novel thrombolyt-
ics using databases of protein sequences and small molecules; (3) 
combining with antioxidants or neuroprotective drugs that could 
potentially attenuate reperfusion injury, and (4) improving the 
delivery of thrombolytics via liposomes or other nanocarriers. 

One of the attractive strategies for improving thrombolytic 
treatment is the use of sonothrombolysis.281 To test newly de-
signed thrombolytics under these specific conditions, progressive 
and reliable in vitro methodologies combining standard assays 
and ultrasound devices are being developed.282-285 At the same 
time, the development of advanced in vitro microfluidic models 
simulating real arterial events are of large interest.286-292 Thanks 
to peristaltic pumps circulating blood inside microfluidic chips 
with blood vessel-like channels coated with endothelial cells, 
the in vitro testing is becoming highly reliable and relevant to 
clinical practice.286,289-291 Once it is confirmed that these assays 

provide robust results, this approach might represent an effective 
and ethical alternative to animal testing. Moreover, substituting 
animal blood with human blood in the microfluidic system could 
lead to even more relevant results. The development and use 
of such advanced methods are crucial for the production and 
robust screening of newly discovered or rationally engineered 
thrombolytic proteins. 

Clinical research has been based mainly on the use of a single 
thrombolytic agent, but precisely defined cocktails of multiple 
drugs might have better joint effects for thrombolytic therapy. 
The most effective combinations should be explored in vitro and 
in vivo using realistic animal models.293 Finally, we would like to 
underline the critical importance of clinical trials; their unbiased 
performance is crucial for effective decision-making. 
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