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A b s t r a c t . This paper presents a performance evaluation of European airports, based on the applica
tion of both parametric and non-parametric approaches. We have evaluated the 115 busiest airports 
in Europe according to the number of passengers checked-in in 2018. The four inputs we used were 
the number of Terminals, Runways, Boarding gates, and Aircraft stands. Three variables were used to 
describe the outputs, namely, Passengers, Movements, and Cargo. The parametric method we chose 
to apply was the Stochastic Frontier Analysis (SEA) with the Cobb-Douglas production function, the 
Half-Normal distribution of inefficiency component, and the Normal distribution of an error term. As a 
basic SEA model only allows for a single output, we employed different methods to get a single efficiency 
score for each and every airport. Next, we evaluated the airport performance non-parametrically using 
several Data Envelope Analysis (DEA) models including the super-efficiency model. We compared the 
results obtained by individual approaches and discussed their pros and cons. Finally, we applied the 
program evaluation procedure to explore the effect of the different forms of airports ownership on their 
performance. 
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1. Introduction 

Airport benchmarking serves the stakeholders as a useful tool to support their decision-making. 
Managers can use it to identify the best practice and develop new concepts for improvement, 
and governments can assess the impact of their policy decisions. The aviation industry has 
developed rapidly over the last years, and different ways of managing airports have evolved 
bringing with them the opportunity for the application of various benchmarking techniques. 
Our study evaluates the relative efficiency of 115 European airports using the data from the 
year 2018. 

One of the essential factors determining airport performance is the form of ownership. In 
the past, most airports were publicly owned, which is still true in some cases. However, during 
the last two decades of the 20th century, privatization took place in many countries. With 
this change, competition between airports has also begun to grow. However, the majority of 
privatized airports in Europe remains subject to some extent of economic regulation [9]. Current 
measures taken by European countries connected to the coronavirus pandemic will have a severe 
impact on transportation companies including airlines and airports. Some governments plan to 
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nationalize major airlines to save them from bankruptcy and similar measures may affect the 
airports. The change in the airports' ownership may well have a significant impact on their 
productivity and efficiency. So, in the final part of our analysis, we compare the performance 
of airports with different forms of ownership. 

The paper is organized as follows: A review of already published works in the area of 
airport efficiency and the effect of ownership is presented in the second section. The models 
for evaluating efficiency and statistical analysis are described in the third section and the data 
sample in the fourth section. The results are presented and discussed in the fifth section, and 
the last section is the conclusion. 

2. Literature review 

Since the late 1990s, a lot of academic research has emerged applying quantitative approaches 
to assessing the productivity and efficiency of airports. The major studies on large European 
airports are represented by Pels et al., [18, 19]. The authors perform analyses separately for 
two different outputs for 33 European airports in 1995-1997. They use SFA to estimate the 
production limit for the number of aircraft movements, obtain predicted values of aircraft 
movements and then use these as another explanatory variable for the number of passengers 
carried. Liebert mentions 38 studies in her survey [11] which apply parametric methodology 
(mostly stochastic frontier analysis) and 29 nonparametric studies (mostly data envelopment 
analysis). Some authors, however, debate the relevance of airport performance evaluation due 
to inconsistencies in the data selection and model specifications which result in limited value 
for managers. Different techniques and the airports' heterogeneous character may lead to 
controversies across studies [12]. Most of the research has been limited in the number of units 
compared, and the regional specification; only 10 papers out of 67 covered by the survey of 
Liebert [11] are based on the sample of European airports, and their number ranges only from 
25 to 48, so our article aims to fill this gap. 

Many empirical studies have analyzed the effects of different ownership forms on efficiency, 
but the results have not led to any clear conclusions. Parker [17] utilizes D E A to estimate the 
technical efficiency of the British airports covering the period pre and post-privatization. He 
finds no evidence that complete privatization leads to improved technical efficiency. Barros and 
Dieke [5] analyze data on 31 Italian airports from 2001 to 2003 to reveal that private airports 
operate more efficiently than their partially private counterparts. However, L in and Hong [13] 
find no connection between ownership form and efficiency after analyzing a data set of worldwide 
airports for the years 2001 and 2002. The results by Vogel [24] on a European set of airports 
reveal that privatized airports operate more cost efficiently and receive higher returns on total 
assets and revenues. Public airports, in turn, had the advantage of higher gearing and financial 
leverage. Oum et al. [15] distinguish between public airports owned by public corporations 
and those owned by more than one public shareholder and conclude that different ownership 
and governance structures affect the quality of managerial performance. Conversely, Oum et 
al. [16] assess a sample of 100 airports worldwide covering the years 2001 to 2003, and they 
reach the conclusion that the productivity of a public corporation is not significantly different 
from that of a major private airport. So, the effect of ownership on airports' efficiency so far 
remains an open question, and with our paper we aim to add to this debate. 

3. Methodology 

The parametric approach is represented in our analysis by the stochastic frontier analysis. In 
the following subsection, we describe the setting of our SFA model and various approaches 
used to aggregate results obtained for the separate outputs into a single measure of inefficiency. 
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Then we present several selected models of data envelopment analysis in the subsection on 
non-parametric approaches. 

3.1. Stochastic frontier analysis 
The stochastic frontier model for one output assumes production function of the form 

Vi = f(x%; P) • exp(vi) • exp(-Ui), i = l,...,n, (1) 

where j/j is the level of the output and Xi is an input vector for i-th unit, Vi is symmetric random 
error, and Ui is nonnegative term representing technical inefficiency, i = 1,..., n. 

Cobb-Douglas production function was chosen as a suitable functional form for our data: 

m 

/(**;/?) = (2) 
3=1 

The stochastic components of our model (random errors and inefficiencies) were supposed 
to have Normal and Half-Normal distributions with following assumptions: 

1. V i ~ iid JV(0,O> 

2. U i ~ i i d N+{Q,a2

u), 

3. Ui and Vi are independent of inputs and mutually independent as well. 

The maximum likelihood method is usually applied to estimate the parameters as described in 
[10]. We have also tested a more general SFA setting, such as using the translog production 
function and general Truncated Normal distribution for the inefficiency term but the results 
didn't differ much, and the extra terms were statistically insignificant, so we stick to the simple 
case. 

As the basic SFA model is designed for a single output only, special procedures have to be 
applied to generalize the approach for more outputs. The first option described by [6] is to 
substitute the production function in the model by the so-called distance function. The input 
distance function is defined as 

x 
di{x, y) = max{p : y can be produced by—} (3) 

P 

The natural assumptions on the production possibility set imply that this function should be 
non-decreasing and concave in inputs. After some simplifications, the model for Cobb-Douglas 
functional form of di{x,y) can be rewritten as 

- \nxmi = /30 + ^2 / 3 j m ( -21- I + 7fcm2/fci + Vi- Ui, (4) 
3 = 1 \XmiJ k = 1 

where Ui = lndi(x,y). Unfortunately, the estimation of the distance function is not always as 
straightforward as it might seem. The first issue can occur in application of SFA models in 
general. It is the correlation between the explanatory variables and the model's error compo
nent, which would violate the basic assumption of the model. This problem can be solved using 
the method of instrumental variables. Another issue occurs if the estimated distance function 
does not meet the required property of monotonicity and concavity in inputs (unless there is 
additional constraint on the coefficients j3). Because of these considerations, we also applied 
the approach suggested by Scippacercola et al., [20] based on the principal component analysis 
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(PCA). We first estimate models for individual outputs separately, then combine the obtained 
inefficiencies into one matrix, where the fc-th column contains the inefficiencies of all units with 
respect to the fc-th output. If the first principal component of this matrix extracts enough of the 
original variability, we can use it as an estimate of inefficiency. The drawback of this approach 
is that using P C A , we can obtain both positive and negative values and the information on the 
total size of inefficiency is lost, so it can only be used for the ranking of the units. To get more 
robust results, we also used the third approach of scalarization computing the total efficiency 
as geomean of efficiencies for individual outputs. 

3.2. Data envelopment analysis 

Basic models of data envelopment analysis are used to evaluate the relative performance of 
decision making units (DMUs) in a homogeneous sample of n units. The efficiency of DMUs is 
expressed on the basis of m inputs and r outputs. 

If we denote the input and output vectors for i-th D M U by Xi and j/j, i = 1,... , n, we can 
express the (input-oriented) efficiency of D M U g by the optimal objective value of the linear 
program 

V f l „ , A i 

subject to XijXi < OqXqj, j = 1,..., m, 

^ž/ifcAi > yqk, k = l , . . . , r , ( 5) 
j=i 
Xi > 0, i = 1,... ,n, 

and Xi = 1, 

where 9q represents the necessary reduction of the inputs and the variable Aj, i = 1,..., n are the 
coefficients of the virtual unit projecting D M U g on the efficient frontier. The last constraint 
corresponds to the variable returns to scale (VRS) assumption. Although the character of 
returns to scale in the area of transportation is subject to a scientific debate [25], most authors 
assume the presence of economies of scale in the aircraft industry [4]. Basic D E A models 
distinguish between orientation on inputs or outputs. They are called radial because they 
indicate the degree of proportional reduction of all inputs (or increase of outputs) to become 
effective for a given unit. However, there are groups of models whose formulation does not 
require model orientation. These models are referred to as additive models or S B M models (slack 
based measure) as their formulation is based on additional variables s~, j = 1,..., m, sjj", k = 
1,..., r, expressing slacks of inputs and outputs. 

As a representative of this group, the model proposed by Tone [22] was selected for our 
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analysis (Tone's Slacks Based Measure model; S B M T model): 

1 _ J , £ II 
m xq 

.7=1 mm — 

fc=l 

subject to Xij Ai + S, = Xa j = l,...,m, 

and 

^ 2/ifcAi -
j=i 

s + > o , 

s- > 0, 

Ai >0, 
n 

: 2/ijfc: — 1 , . . . , r, 

fc = l , . . . , r , 

j = l , . . . , m , 

j = l , . . . , n , 

(VRS) assumption 

(6) 

As many benchmarking studies aim to obtain a unique ranking of the DMUs, it is not 
desirable to use a method that identifies a large portion of the units as fully efficient. This 
situation can often occur when we use ordinary models, mainly when we use many inputs and 
outputs and assume variable returns to scale. So the S B M T model has been further modified [23] 
to the super S B M T model having more discriminatory power for the units identified as efficient 
by the basic model. The super-efficiency S B M T model removes the evaluated unit D M U , from 
the set of DMUs and looks for its projection on the efficient frontier (DMU*) determined by 
the remaining n — 1 units. The super-efficiency measure is defined as the distance of the units 
D M U g and D M U * in their input and output space. The virtual inputs x*, i = 1,... ,m, and 
outputs ?/*., k = 1 , . . . , r, are determined by the fractional linear program 

J _ y i L 

3 = 1 

E 
fc=i 

subject to ^ y. %ij Ai ^ xj, j 1, ,m, 

^2 / i f cAi >y*k, k =l,...,r, 

xj — xqj' 
Vk < Vqk, 
Ai >0, 
A, = 0, 

n 

5> = i 

j = l,...,m, 

k =l,...,r, 

i = l,...,n,i^ q, 

(7) 

The last constraint corresponds to the variable returns to scale assumption. When applying 
the method to our data, we followed the two-phase procedure recommended by [8]: 



6 Markéta Matulová and Jana Rejentová 

1. Use the basic S B M T model (without excluding the unit under evaluation from the set 
of DMUs in the model) to divide units into efficient and inefficient ones, for which we 
compute the S B M T efficiency values. 

2. Compute the super-efficiency according to the super S B M T model 7 for efficient units 
from the first phase. 

By this procedure, referred to as the (super) S B M T model we get values greater than 1 for 
efficient units and less than 1 for inefficient DMUs. 

3.3. Comparing efficiency across groups: program evaluation proce
dure 

In order to explore the effect of different forms of ownership on the performance of the airports, 
we wanted to control for the other factors. So we applied the program evaluation procedure 
outlined by Brockett and Golany [7] and Sueyoshi and Aoki [21]. The purpose of this procedure 
is to distinguish between the degree of inefficiency caused by the uneconomical operation of the 
units and that caused by belonging to a particular group. The procedure includes four steps: 

1. Split the group of all DMUs (j = 1,..., n) into p subgroups consisting of ri\,..., np DMUs 
( Yli=i ni = n)- R - u n D E A separately for the individual groups. 

2. In each of the p groups, adjust inefficient DMUs to their "level if efficient" values by 
projecting each D M U onto the efficiency frontier of its group. 

3. Run a pooled D E A with all n DMUs at their adjusted efficient levels. 

4. Apply a statistical test (Mann-Whitney for two groups or Kruskal-Wallis for p > 2) to 
the results of the previous step to determine if the groups have the same distribution of 
efficiency values within the pooled D E A set. 

4. Data for the analysis 

There are 1093 airports with assigned IATA ( International Air Transport Association) code in 
Europe, see Airport Database 2019 [3]. For our analysis, we intended to cover the 150 busiest 
European airports according to the number of passengers transported in 2018. The airport 
traffic report of the association Airports Council International shows that highest number of 
passengers came through London Heathrow Airport, followed by Charles Airport de Gaulle 
in Paris and Schiphol in Amsterdam [1]. Data collection proved to be quite problematic. 
No summary was available for many airports; therefore data were searched individually, but 
relevant information was missing in some cases. That is why we had to exclude 35 airports 
and consequentially, our data sample covers 115 of them. The map in Figure 1 shows all the 
airports considered initially for analysis. It is color-coded for airports with complete data and 
airports excluded from the study. We can see that almost every European country has at least 
one representative in the sample. 

In our analysis, the output side is expressed by three variables, namely passengers, aircraft 
movements, and cargo. The number of runways, terminals, gates, and aircraft stands were 
selected for the inputs. The selection of relevant variables for the analysis was based on a 
literature review. The number of terminals was used twice (further, the capacity of terminals 
was used twice and the total area of terminals was used 9 times in different studies), the number 
of runways was used 7 times (plus 3 further times referring to their area and 4 times to their 
total length), boarding gates were analyzed 5 times, and aircraft stands 6 times (and 3 further 
times referring to their area). On the output side, 20 studies used the number of passengers, 18 
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Longitude 

• Incomplete observat ion (not inc luded in the ana lys is ) 

• C o m p l e t e observat ion ( included in the ana lys is ) 

Figure 1: Map of airports locations 

number of aircraft movements, 17 the total tuns of cargo. In addition to the characteristics we 
used, there are also sometimes other variables used, like total costs, staff, or check-in counters 
on the input side and revenues on the output side [12]. Descriptive statistics of inputs and 
outputs of units included in our study are in Table 1. 

Terminals Runways Gates Stands Passengers Movements Cargo [t] 
Minimum 1.000 1.00 4.00 6.00 1677661 13195 51 
1st quartile 1.000 1.00 14.50 24.00 4310005 42853 3800 
Median 1.000 1.00 23.00 40.00 6962040 76995 18543 
Mean 1.687 1.67 43.52 60.85 14309037 117317 141920 
3rd quartile 2.000 2.00 53.00 75.00 17900050 149867 93922 
Maximum 5.000 6.00 269.00 340.00 80124537 512115 2176389 

Table 1 Table 1: Descriptive statistics of inputs and outputs 

5. Results and discussion 

The methods described in Section 3 were applied on the data using the R packages deaR, 
f r o n t i e r , and nps f . First we evaluated the SFA model for each output separately. The 
parameters were estimated by the maximum likelihood method. Table 5 shows the summary 
statistics of these simple SFA models, where the p-values are taken from the (asymptotic) nor
mal distribution. In all three models, the logarithm of the number of terminals appears to be 
insignificant, while the other input variables appear to be significant. 
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Passen;; ;ers Movements Cargo 
Constant 12.936 8.492 4.117 *** 

(0.189) (0.196) (0.864) 
ln(Terminals) -0.007 -0.037 -0.493 

(0.084) (0.079) (0.341) 
ln(Runways) 0.290 0.181 ** 0.705 * 

(0.092) (0.085) (0.360) 
ln(Boarding_gates) 0.558 0.592 ** 0.770 * 

(0.076) (0.071) (0.283) 
ln( Aircraft .stands) 0.383 0.283 ** 1.221 * 

(0.078) (0.073) (0.299) 

Table 2: Estimations of separate SFA models; standard deviations in brackets; ****** 
denotes statistical significance of 10%, 5%, 1% 

We focused on model diagnostics and checked the distribution assumptions for both error mem
bers in the model. Figure 2 shows histograms and the probability density of the individual terms. 
Using the Kolmogorov-Smirnov test, we do not reject the null hypothesis about the normality 
of the error component. The inefficiency component should follow a Half-Normal distribution, 
and according to the graphs, it seems that this assumption should be met for all three mod
els. So we can express the individual efficiencies and subsequently apply a suitable method of 
their aggregation because we are most interested in approaches that take into account all three 
outputs together so they can be compared with D E A models. 

As a first approach for multiple inputs, the distance function (4) was used. The logarithm 
of the number of terminals was chosen as the normalization variable; however, the same results 
would be obtained for any other input. Again, we have checked the assumptions about the 
distribution of error and inefficiency component terms. However, all the model parameters 
appeared to be insignificant; it is therefore possible that some of the other model assumptions 
were not met. The other two possible approaches directly aggregate the efficiencies obtained 
using simple SFA models. First, we applied the P C A method to individual efficiencies. The 
obtained first main component covered about 58% of the total variability and efficiency of 
outputs were represented as follows: number of passengers with a coefficient —0.69, number 
of aircraft movements by a coefficient —0.70, and cargo with a coefficient —0.19. We checked 
the direction of correlation of the first principal component with the original efficiencies, and 
since this correlation was negative, we multiplied the P C A scores by —1 to maintain the same 
interpretation as the efficiency rate - the higher the value of the main component, the more 
efficient the airport. Now we could arrange the airports from the most to the least efficient. The 
last approach was probably the simplest of all mentioned so far, it was based on a geometric 
mean of efficiencies obtained by simple models. 

We compare the results using Spearman correlation coefficients, which is shown in Figure 3. 
If we look at the correlations of simple models, we can see that the model for the number of 
passengers is strongly correlated with the model for aircraft movements, but their correlation 
with the model for cargo is weak. This may be due to the correlations between the inputs 
themselves. Benchmarking of airports using the cargo model is therefore quite different from 
the other two. The results of distance function and P C A models are strongly correlated with 
the individual models for the number of passengers and the number of aircraft movements, 
which again corresponds to the correlations between simple models. The correlation between 
all methods for multiple outputs is relatively strong in general. It is surprising that even a 
simple concept of geometric mean can compete with more sophisticated approaches. 

It is know that basic D E A models can identify several DMUs as fully efficient. As expected, 
the model (5) identified only 22 airports as inefficient. The non-radial model defined by equation 
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Figure 2: Distribution of error terms of simple SFA models 

(6) gave better results with 77 inefficient units. But there is still some space for improving the 
results because we cannot rank the units with efficiency equal to 1. So we finally evaluated 
the performance of the airports by the two-stage procedure combining the results of (6) with 
the super-efficiency model (7). The rank correlations of D E A scores with the SFA results are 
shown in Figure 4. 

We can see that the basic D E A model scores are poorly correlated with all the other results. 
The main reason is probably the low discriminatory power of this model. The best agreement 
of non-parametric and parametric approaches (with correlation equal to 0.64) is achieved using 
(super) S B M T model of D E A and the geometric mean of individual SFA scores. So for further 
comparison, we select these two methods. The top ten performers identified by particular 
methods are listed in Table 5. 
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0.58 f J L ä 0.58 

d is junct ion 0.69 0.47 Correlations 
• 1 0 

cargo 0.2S 0.27 0.91 
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0.0 

movements 0.17 0.57 0,1 0.44 

-0.5 

^ -1.0 

passengers 0.7 0.1 0.66 0.9 0.41 

Figure 3: Spearman correlations of SFA results 

p c a _ S F A 0.58 

dist_function_SFA 0.69 0.47 dist_function_SFA 0.69 0.47 

superSBMT_DEA 0.52 0.59 0.64 

S B M T _ D E A 0.98 0.52 0.61 0.62 

basic D E A 0.2 0.2 0.49 0.12 0.06 

• 
• 

1.0 

ij.5 

MM 

-0.5 

-1.0 

4* 4* 

Figure 4: Spearman correlations of DEA and SFA results 

Rank D E A : (super) S B M T T E Size rank SFA: Geometric mean T E Size rank 
1 Frankfurt- Hahn 1.321 111 Reykjavik 0.826 46 
2 London Heathrow 1.266 1 Zagreb 0.789 91 
3 Amsterdam Schiphol 1.258 3 London Heathrow 0.744 1 
4 Reykjavik 1.241 46 Bologna 0.739 •54 
•5 Kos 1.234 101 Belfast 0.735 7 
6 Santorini 1.1 81 108 Moscow Sheremetyevo 0.734 9 
7 London Stansted 1.163 19 Naples 0.730 45 
8 London Luton 1.160 32 Lisbon 0.728 16 
9 Chania 1.156 97 Milan Orio al Serio 0.722 37 
10 East Midlands 1.153 80 Belgrade 0.719 71 

Table 3: Technical efficiencies of top ten performers 

Only two airports are on both top ten lists. London Heathrow, with 80 million of transported 
passengers, is the busiest European airport, and Reykjavik - Keflavfk is the main airport for 
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international connections to the whole of Iceland. It seems that smaller airports are preferred 
when we apply the D E A method; the best airport Frankfurt-Halm is actually one of the smallest 
in our sample. It has the advantage of geographic location between Frankfurt and Luxembourg, 
about 120 km to both cities, so it represents a cheaper alternative to Frankfurt Airport. Other 
smaller airports on the list (Kos, Santorini, Chania) serve mainly for seasonal flights of charter 
operators. But, on the other hand, big international hubs such as London Heathrow and 
Amsterdam Schiphol occupy the top positions of the D E A ranking. Concerning SEA results, 
the smallest airport among the top performers is Zagreb which is the second best. Zagreb 
airport is the largest and busiest international airport in Croatia, the Croatian flag carrier 
Croatia Airlines hub and a focus city for charter operator Trade Air . 

Using these results, we analyzed the effect of ownership on airport efficiency measures using 
the procedure presented in subsection 3.3. We have classified the airports into three groups: 
Fully public (including Fully public - corporatized and Fully public - part of public administra
tion), Fully private, and Mixed group (including Mostly public, Mostly private, Equally public 
and private). Our sample comprises 21 fully private airports, 44 fully public, and 50 airports 
in mixed ownership. A preview of the D E A and SEA results for 30 busiest airports together 
with the ownership cathegory can be found in Table 5. 

D E A SFA 
Name Ownership T E rank T E rank 

London Heathrow Fully private 1.266 2 0.744 3 
Paris Charles de Gaulle Mostly public 1.011 36 0.620 39 
Amsterdam Schiphol Mostly public 1.258 3 0.568 55 
Frankfurt am Main Mostly public 1.152 11 0.683 20 
Madrid Mostly public 0.310 64 0.401 91 
Barcelona Mostly public 0.222 71 0.370 97 
Munich Fully public - corporatized 1.071 18 0.545 61 
London Gatwick Fully private 1.089 14 0.500 75 
Moscow Sheremetyevo Mostly public 1.054 22 0.734 6 
Rome Fiumicino Mostly private 0.396 55 0.548 59 
Orly Mostly public 1.001 38 0.482 80 
Dublin Fully public - corporatized 0.396 56 0.620 38 
Zurich Mostly private 0.483 49 0.630 36 
Copenhagen Mostly private 0.505 48 0.618 41 
Palma de Mallorca Mostly public 0.027 99 0.333 99 
Lisbon Fully private 1.071 17 0.728 8 
Manchester Mostly public 0.299 65 0.616 43 
Oslo Fully public - corporatized 1.078 15 0.660 27 
London Stansted Mostly public 1.163 7 0.695 14 
Vienna Mostly private 0.421 52 0.615 44 
Stockholm Arlanda Fully public - corporatized 0.175 79 0.485 79 
Brussels Mostly private 0.705 40 0.572 53 
Malpensa Mostly public 0.509 47 0.535 64 
D usseldorf Equal public and private 0.162 83 0.488 77 
Athens Mostly public 1.034 26 0.691 17 
Berlin Tegel Fully public - corporatized 0.314 63 0.539 63 
Helsinki Fully public - corporatized 1.037 25 0.698 13 
Malaga Mostly public 0.010 106 0.253 106 
Saint Petersburg Pulkovo Fully private 1.014 34 0.375 94 
Geneva Fully public - corporatized 1.034 27 0.682 22 

Table 4: Technical efficiencies of 30 busiest airports 
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In Figure 5 we can see two graphs showing the boxplots of D E A efficiency for individual types 
of ownership. The black line in the box diagram corresponds to the median, and the black dot 
to the mean efficiency. The graph on the left shows the situation when the program evaluation 
procedure of subsection 3.3 was not used. It is therefore a comparison of efficiencies between 
different ownership groups using an overall model. If we perform the Kruskal-Wallis test for 
these values, we obtain a p-value of 0.762, and thus we do not reject the null hypothesis that 
there is no effect of ownership on efficiency. However, this evaluation includes possible aspects 
of the uneconomical operation of individual airports. The boxplot on the right side of Figure 5 
is obtained by the proposed procedure for group comparison using (super) S B M T models. The 
differences between groups are more pronounced. In this case, the Kruskal-Wallis test returns 
a p-value of 0.064, and therefore we reject the null hypothesis that there is no effect of airport 
ownership on the efficiency level at the significance level of 10%. On average, privately owned 
airports seem to be the most efficient, followed by a group of mixed-owned airports, and public 
airports appear to be the least efficient. 

O w n e r s h i p 

^ | Fully private *= 

Fully public ^ 

EjEl Mixed 

O w n e r s h i p 

Fj^ Fully private 

h H Fulty public 

Mixed 

Figure 5: Efficiency comparison; on the left model for the original data, on the right model for the corrected values 

6. Conclusion 

In this paper, we have evaluated the performance of 115 European airports. We have based 
our computations on five inputs, including the number of terminals, runways, boarding gates, 
and aircraft stands, and three outputs represented by the number of passengers, aircraft move
ments, and tons of cargo. We applied SFA model with the Cobb-Douglas production function 
and Normal/Half-Normal distribution of error and inefficiency terms. We employed three dif
ferent scalarisation techniques for the efficiency scores obtained using the individual outputs, 
namely distance function, principal component analysis, and geometric mean. The usage of 
distance function is restricted by rather demanding assumptions, so it cannot be recommended 
as a generic method. The disadvantage of the approach based on P C A is that it provides 
no information on the absolute inefficiency level. Another problem may arise when the main 
component does not extract enough variability of inefficiency terms. So, for its simplicity and 
universal usage, we selected the last option based on geometric average as the most suitable SFA 
multi-output model. Next, we evaluated airport performance non-parametrically using three 
D E A models (basic model for variable returns to scale, Tone's additive model, and the super-
efficiency S B M T model). The last option was selected as the most appropriate to get a unique 
ranking of DMUs. We confronted results obtained parametrically and non-parametrically and 
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realized that there is a strong positive association between SFA and D E A scores (Spearman 
correlation of 0.64). We used these obtained results to explore how airports' performance is 
affected by their form of ownership. Applying the naive approach comparing the efficiency 
scores of individual airports, we found no statistically significant difference in the performance 
of airports with different forms of ownership. After applying an advanced approach controlling 
for the influence of inefficiencies caused by individual managerial failures we obtained quite 
contrasting results identifying private airports as the most efficient and public airports as the 
least efficient. 

The limitation of similar studies is given by the sensitivity of results to the methodology em
ployed. The values of the effective scores are influenced by the model specification including the 
selection of a particular model from the portfolio of parametric or non-parametric approaches 
and determination of inputs and outputs, economies of scale, etc. In addition, some annual 
reports on airport performance show evidence of inconsistencies over time and there is also 
high possibility of the occurrence of other biases caused e.g. by longer-term effects of lumpy 
capital investments. [14]. This paper aims at getting more robust results by combining findings 
obtained by different models. Nevertheless the topic deserves further examination; one possible 
way of extending the study is to cover longer time period. 
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