D 2021

Better Model, Worse Predictions: The Dangers in Student Model Comparisons

ČECHÁK, Jaroslav and Radek PELÁNEK

Basic information

Original name

Better Model, Worse Predictions: The Dangers in Student Model Comparisons

Authors

ČECHÁK, Jaroslav (203 Czech Republic, belonging to the institution) and Radek PELÁNEK (203 Czech Republic, belonging to the institution)

Edition

Cham, International Conference on Artificial Intelligence in Education, p. 500-511, 12 pp. 2021

Publisher

Springer

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

Impact factor

Impact factor: 0.402 in 2005

RIV identification code

RIV/00216224:14330/21:00121881

Organization unit

Faculty of Informatics

ISBN

978-3-030-78291-7

ISSN

UT WoS

000885021300040

Keywords in English

Additive factor model; Student modeling; Simulation; Model comparison

Tags

International impact, Reviewed
Změněno: 16/8/2023 13:19, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

The additive factor model is a widely used tool for analyzing educational data, yet it is often used as an off-the-shelf solution without considering implementation details. A common practice is to compare multiple additive factor models, choose the one with the best predictive accuracy, and interpret the parameters of the model as evidence of student learning. In this work, we use simulated data to show that in certain situations, this approach can lead to misleading results. Specifically, we show how student skill distribution affects estimates of other model parameters.

Links

MUNI/A/1549/2020, interní kód MU
Name: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity 21 (Acronym: SKOMU)
Investor: Masaryk University
MUNI/A/1573/2020, interní kód MU
Name: Aplikovaný výzkum: vyhledávání, analýza a vizualizace rozsáhlých dat, zpracování přirozeného jazyka, umělá inteligence pro analýzu biomedicínských obrazů.
Investor: Masaryk University