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Abstract—This Full Paper in the Innovative Practice cate-
gory presents and evaluates a technical innovation for hands-
on classes. When learning cybersecurity, operating systems, or
networking, students perform practical tasks using a broad range
of command-line tools. Collecting and analyzing data about the
command usage can reveal valuable insights into how students
progress and where they make mistakes. However, few learning
environments support recording and inspecting command-line
inputs, and setting up an efficient infrastructure for this purpose
is challenging. To aid engineering and computing educators,
we share the design and implementation of an open-source
toolset for logging commands that students execute on Linux
machines. Compared to basic solutions, such as shell history
files, the toolset’s novelty and added value are threefold. First,
its configuration is automated so that it can be easily used in
classes on different topics. Second, it collects metadata about
the command execution, such as a timestamp, hostname, and IP
address. Third, all data are instantly forwarded to central storage
in a unified, semi-structured format. This enables automated
processing of the data, both in real-time and post hoc, to
enhance the instructors’ understanding of student actions. The
toolset works independently of the teaching content, the training
network’s topology, or the number of students working in parallel.
We demonstrated the toolset’s value in two learning environments
at four training sessions. Over two semesters, 50 students played
educational cybersecurity games using a Linux command-line
interface. Each training session lasted approximately two hours,
during which we recorded 4439 shell commands. The semi-
automated data analysis revealed different solution patterns, used
tools, and misconceptions of students. Our insights from creating
the toolset and applying it in teaching practice are relevant for
instructors, researchers, and developers of learning environments.
We provide the software and data resulting from this work so
that others can use them in their hands-on classes.

Index Terms—cybersecurity education, host-based monitoring,
command-line history, Syslog, virtual machines, sandbox, educa-
tional data mining, learning analytics, learning technology

I. INTRODUCTION

Hands-on training is vital for gaining expertise in computing
disciplines. Topics such as cybersecurity, operating systems,
and networking must be practiced in a computer environment
so that students can try various tools and techniques. Such a
learning environment is called a sandbox. It contains networked
hosts that may be intentionally vulnerable to allow practicing
cyber attacks and defense. These skills are grounded in the
current cybersecurity curricular guidelines [1] to address the
increasing shortage of cybersecurity workforce [2].

Pavel Celeda
Masaryk University
Brno, Czech Republic
celeda@ics.muni.cz

Daniel Tovarnak
Masaryk University
Brno, Czech Republic
tovarnak @ics.muni.cz

For the training, each student receives an isolated sandbox
hosted locally or in a cloud. To solve the training tasks, students
work with many tools, both in a graphical user interface (GUI)
and a command-line interface (CLI). This paper focuses on the
Linux CLI, which is common in higher education of computing,
as well as software development in the industry practice.

Analyzing CLI interactions opens opportunities for educa-
tional research and classroom innovation. In traditional face-
to-face classes, instructors must look at the students’ computer
screens to observe the learning process. However, this approach
does not scale for large classes, and it becomes difficult for
distance education. Instead, if the students’ executed commands
are logged, instructors and researchers may leverage them to
support learning. By employing the methods of educational
data mining [3] and learning analytics [4], the CLI data can
help achieve important educational goals, such as to:

o better understand students’ approaches to learning, both
in face-to-face and remote classes,

o objectively assess learning, and

o provide targeted instruction and feedback.

This paper examines the following research question relevant
for instructors: What can we infer from students’ command his-
tories that is indicative of their learning processes? Specifically,
our goal is to understand how students solve cybersecurity
assignments by analyzing their CLI usage. To address this
question, we propose a generic method for collecting CLI logs
from hands-on training. Then, we evaluate this method by
gathering the logs from 50 students at four training sessions
and investigating three sub-questions / use cases of the data:

1) What does the command distribution indicate about the
students’ approach to solving the tasks? Our motivation
is to analyze which tools are commonly used and how
effective they are with respect to the training tasks.

2) Which commands are used immediately after the student
accesses the learning environment? We can observe if
the students started solving the initial task, familiarized
themselves with the environment, or displayed off-task
behavior. This allows for providing suitable scaffolding.

3) How much time do students spend on the tasks, and
how often do they attempt an action? Observing the time
differences between successive commands can indicate
the students’ skill level and support assessment.

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. Cite this article as follows: V. Svabensky, J. Vykopal, D. Tovariidk, and P. Celeda. Toolset
for Collecting Shell Commands and Its Application in Hands-on Cybersecurity Training, in Proceedings of the 51st IEEE Frontiers in Education Conference
(FIE ’21). Lincoln, Nebraska, USA, 2021. DOI: 10.1109/FIE49875.2021.9637052.



https://doi.org/10.1109/FIE49875.2021.9637052

Although there are many cybersecurity learning environ-
ments, which we review in Section II, their logging support
is often limited or non-existent. The current solutions do not
allow instructors to uniformly collect CLI data and metadata
with minimal setup and then correlate the logs from multiple
sandboxes for advanced analyses.

This paper addresses this gap by presenting and evaluating
a technical innovation for hands-on classes that employ CLI
tools. We created a toolset that collects Linux shell commands
in physical or virtual learning environments and stores them in
a unified format. Compared to the previous practice, where ob-
serving students’ learning was difficult or even impossible, the
proposed innovation enables understanding student approaches
at scale. It also allows employing educational data mining and
learning analytics techniques to gain further insights.

The toolset design is explained in Section III. In Section IV,
we introduce a study that deploys the toolset in practice
and evaluates it in authentic educational contexts. Section V
presents the results of the study and addresses the questions
above. Section VI discusses the study and proposes multiple
research ideas that further leverage the collected data. Finally,
Section VII summarizes our contributions. We also publish the
toolset as open-source software. Instructors, researchers, and
developers can use it to enhance computing classes, such as
teaching cybersecurity, operating systems, and networking.

II. RELATED WORK

This section contextualizes the work within the pedagogical
literature. Then, it reviews learning environments and research
in collecting and analyzing student data. We also point out the
addressed gaps and explain how we differ from existing work.

A. Theoretical and Pedagogical Background

Active learning is “any instructional method that engages
students in the learning process” [5]. Sanders et al. [6] reviewed
38 active instructional techniques, including hands-on labs,
educational (serious) games, and automated tutoring systems
that provide feedback to students. Unlike traditional lectures,
active learning enables students to understand the topic more
deeply [7]. Although the context matters, research strongly
supports the notion that incorporating active methods improves
learning [5]. That is why practice with CLI tools is important
in engineering and computing education.

Zone of proximal development [8] is a learning theory about
an imaginary “space” slightly beyond the student’s comfort
zone, but where the student can learn if given some scaffolding.
Scaffolding is instructional support such as feedback and advice
from the teacher, assignment of tasks suitable for the learner’s
skill level, and provision of hints. Applying this cognitive
science theory improves the effectiveness of hands-on training.
Although students often face ill-defined challenges that require
complex problem-solving skills, given suitable scaffolding,
they learn to solve practical problems in an authentic setting.
Observing students’ learning processes by employing CLI
logging is the first step toward providing scaffolding and timely
feedback, which we demonstrate in Section VI-B.

B. Learning Environments for Cybersecurity Training

A security testbed is a physical or virtual environment
that emulates computer systems for research, development,
or education. It allows reliable, accurate, repeatable, and safe
execution of experiments [9]. A related term is a cyber range,
which is a platform for interactive simulation environments [10]
for security training and experimentation [11]. Examples of
testbeds and cyber ranges used in cybersecurity education are
DETERLab [12], [13], EDURange [14], GENI [15], [16], and
KYPO CRP [17]. For a thorough overview, see [18].

Testbeds and cyber ranges may be complex and costly to
operate. However, packaged virtual machines (VMs) have
similar benefits and are simpler to use. Thus, they are widely
employed in cybersecurity courses [19]. Authors of [20] teach
security with locally hosted VMs. Projects SecKnitKit [21]
and SEED [22] provide VMs with labs for guided teaching of
security topics. Some SEED labs were ported into Labtainers, a
training framework based on Docker containers to allow easier
use [23]. The containers, similarly to VMs, ensure that the lab
software will always run the same. Finally, Vulnhub [24] and
Metasploitable [25] share virtual targets for hacking.

Although many learning environments exist, few of them
leverage the potential of collecting and analyzing training data.
Only EDURange, DETERLab, and Labtainers include host-
based logging of commands (see Section II-C for comparison
with our approach). The VM solutions do not provide an
easy way to monitor student actions [14], [26]. What is more,
creating and configuring VMs is time-consuming, and they
remain static once created [27].

C. Collection and Analysis of Cybersecurity Education Data

In Capture the Flag (CTF) challenges, the participants solve
cybersecurity tasks to obtain text strings called “flags” as proof
of solution. Flags include, for example, passwords from a
breached service. Previous works collected quantitative data
from CTF, such as the flag content or timing [28]. Although
such data are relevant for assessing success or failure, they are
insufficient for understanding how students learn. To illustrate,
an incorrect flag means that the student did not complete
the challenge. However, it does not reveal the approach to
obtaining the flag, making it harder to address the student’s
misconceptions. We need detailed information about how the
student progressed while solving the tasks. Within the scope
of our work, this means the entered shell commands.

Keyloggers such as ttylog [29] or recording software such
as asciinema [30], [31] appear to be a universal solution. A
keystroke logging approach has also been used in programming
education research [32]. However, keyloggers capture individual
characters, which is too fine-grained. Reconstructing the
commands then requires parsing large amounts of data. Video
recording software, on the other hand, does not allow easy
correlation of data from multiple sandboxes. Native Linux
solutions, such as commands stored in the .bash_history
file at a local host, have the same limitation. Therefore, we
need a compact machine-readable format suitable for logs from
cybersecurity training.



Irvine et al. [23] collected files containing the stdin and
stdout streams from Docker containers of students working in
Labtainers. Labtainers software then used the files to check if a
student achieved a certain goal (such as completing a learning
task). However, the data were not aggregated in real-time from
all containers to gain an overall understanding. Students had
to send the log files manually after the training.

Weiss et al. [14], [26] logged shell commands in EDURange
to visualize the students’ steps. In follow-up work, Mirkovic
et al. [33] presented the system for logging and analyzing
commands in DETERLab. The system monitored terminal
input and output and compared them with task milestones to
automatically assess student progress. Similarly [34], [35] also
implemented host-based logging to reconstruct the students’
progress. Although the goal of the above-mentioned works is
similar to ours, their approach is complementary. We extend
the state of the art in the following aspects:

1) Focus on understanding of students’ learning processes,
not only the outcomes (succeeding or failing a task) when
analyzing data from cybersecurity training (see Section V).

2) Real-time, automatic, and secure forwarding of logs.

3) Support of more Linux-based operating systems.

4) Enabling the logging of commands from Metasploit
shell [25], an essential cybersecurity tool.

5) Easier deployment to other existing learning environments.
The deployment is automated using Ansible [36], a well-
established software for configuration management.

6) Generic output format that can be processed by custom
software or integrated with an existing one, such as
Weka [37] or ELK [38].

7) Demonstration of innovative analyses of command histo-
ries (see proof of concept in Section VI-B).

D. Tools for Teaching Linux Shell Commands

To provide a complementary viewpoint, we briefly examine
systems for teaching Linux CLI in general, without an explicit
focus on cybersecurity. TuxLab [39] and uAssign [40] are two
such systems. Both leverage virtualization, since they are based
on Docker containers. Students can use them for practicing
Linux commands, which are immediately evaluated in the
container and autograded. The difference from our work is
that neither of them collects the commands for further analysis.
TermAdventure [41], on the other hand, stores the command
logs, but is not a standalone logging toolset as we present here.

III. TOOLSET FOR COMMAND LOGGING

Figure 1 shows the generic topology of a sandboxed network
for cybersecurity training. It contains an attacker machine
controlled by the trainee and several vulnerable hosts (black-
colored elements). Since we assume one trainee per sandbox, !
each trainee receives its identical copy. On top of that, we
configure the (blue-colored) infrastructure elements responsible
for collecting CLI logs from the hosts.

If teamwork is needed, a group can access the same sandbox. However,
the toolset cannot distinguish individuals within the group. The mapping of
logs to students is done only based on the sandbox ID.

A. How Does the Toolset Work?

Each host in the sandbox has two network interfaces: training
(black) and management (blue). The former enables the trainee
to interact with hosts in the sandbox and complete the training
tasks. The latter exists in the network to initially configure the
sandbox. We utilize it for host-based logging and forwarding
of the logs to central storage.

The logs are generated on all sandboxed machines that a
trainee accesses. Every time (s)he enters a command on a Linux
host, it is stored on that host using the Syslog protocol [42].
The log is then instantly forwarded to the Syslog server of the
sandbox. Finally, the logs from Syslog servers of all sandboxes
are securely forwarded to a central storage (see Figure 1). The
intermediate step with the Syslog server is optional and can
be bypassed to log directly into the central storage. The data
can be accessed continuously in real-time or after the training.

To verify that all submitted commands arrive correctly,
we performed multiple manual tests. We deployed the data
collection in two learning environments [17]: a complex
cloud-based platform KYPO CRP and a lightweight, locally
virtualized platform Cyber Sandbox Creator. Section IV and
Section V present the study that analyzes the collected data.

The configuration files that supplement this paper (see
Section VII-A) enable others to deploy this toolset in their
physical or virtual environment. Instructors who do not have
access to a cloud can prepare VMs provisioned with the logging.
Students can download them and use them on their computers,
and instructors can observe the commands at the central storage
deployed at their institution or in a public cloud.

B. Implementation Details

Our approach works for the Bash shell [43] since it employs
a Bash variable $PS@. Its value is expanded “after reading a
command and before the command is executed” [43] to a call of
the logger [44] command, which can enter arbitrary messages
into the host’s system log socket (typically /dev/log). This
AF_LOCAL socket is widely used by standard logging daemons
and services. Regardless of the used Linux distribution, modern
logging daemons can transform, store, and forward log entries
flexibly. We use rsyslogd daemon [45] to forward the logs to
a remote location via the Syslog protocol, as described above.
Since the logging is based on Syslog, it can be deployed
generically. Any application can log into Syslog, or at least in
a plain text file that can be forwarded to Syslog.

C. What Data Are Collected?

Figure 2 shows a command executed on the Attacker machine
and the subsequently generated log record. We collect each
line of the terminal input: the entire command, including all
arguments. All inputs are timestamped (up to microsecond
precision) and identify the host and sandbox in which the
command was executed. The hosts must have a synchronized
time to allow correlating the commands. We also collect
essential metadata about the execution, such as the working
directory and type of the command to distinguish between the
Bash and Metasploit shell.
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Fig. 3. Content of the file sandbox1. json generated from the Syslog record o User transparency: the logging interface is in the isolated
in Figure 2 and saved in the central storage. management network, so it does not affect the training
network or negatively impacts trainees’ learning or user
To protect the trainees’ privacy, no personally identifiable experience.
information is collected. The sandbox is identical for all e Live streaming: each new log record is immediately
trainees, so the usernames are generic and unrelated to their forwarded to the central storage. Instructors can analyze
identity. Since the sandbox is isolated, data about the trainees’ the data instantly and provide rapid feedback to trainees.
physical computers are not logged or even accessed. o Remote storage: even if the logs are modified locally, the
The captured data are stored in JSON shown in Figure 3. copy on the central storage stays intact. If the connection
This universal, machine-readable format allows data analysts is interrupted, all logs are buffered in the local machine’s
to process the logs in a way that suits their needs. This can memory and then forwarded once it is back online.
involve writing custom scripts, using open-source tools such o Secure transfer of data: the logs are signed and encrypted

as Weka [37], or adding ELK [38] to the analysis pipeline. to maintain their integrity and confidentiality.



o Machine-readable output: the logs are stored in a universal,
semi-structured format (JSON), which simplifies their
further processing.

o Installability: the toolset is open-source and uses only
standard Linux components. Thus, it is widely applicable
and compatible.

E. Limitations of the Logging Toolset

The practical application of the toolset in two learning
environments revealed some of its shortcomings:

o The data collection is constrained to the commands entered
in a shell. Any edits of commands before the submission
(pressing the Enter key) are not recorded. We also do not
capture any other data indicating progress, such as mouse
clicks, network traffic, or filesystem changes.

e We do not collect the command’s return code or output,
since logger is called before the command is executed.
Neither we collect the submission of control sequences
such as Ctrl + C or responses to prompts.

e The logging currently works only on Linux hosts. How-
ever, it could be analogously extended to Windows hosts
to log PowerShell [47] instead of Linux shell commands.

e An advanced trainee with administrator privileges on a
machine could tamper with or turn off the logging from
that host. However, the instructor would notice the absence
of logs. A future challenge is to hide the logging to prevent
both intentional and accidental changes.

IV. STUDY SETUP AND METHODS

We now describe the study that involved deploying our
toolset in authentic educational settings on multiple occasions.
The study addresses our goal of understanding trainees’ learning
processes by examining their command histories. Moreover,
we evaluate the applicability of the toolset and demonstrate
the value of the collected data.

A. Teaching Context and Training Content

During the Fall 2019 and Spring 2020 semesters, the students
of an undergraduate course Seminar on the Simulation of Cyber
Attacks [48] at Masaryk University created eight educational
cybersecurity games. The games involve practicing security
skills using Linux Bash shell in a virtual network similar
to the one in Figure 1. The game tasks focus on gradually
compromising the security of a simulated IT system, following
the stages of Mandiant’s Attack Lifecycle [49, p. 27]. All the
games exploit the same vulnerabilities, and they differ only in
the fictitious background story and the task presentation.

The games’ learning objectives and tasks are centered around
using CLI tools in Linux distribution called Kali [50], [51].
Each game starts by scanning a target network using nmap [52].
Nmap can determine what services are running on the network
hosts and their port numbers. This corresponds to the first stage
Initial Reconnaissance in the Mandiant’s Attack Lifecycle. The
next task is to identify a vulnerable service on the target
and exploit it using Metasploit [25], a penetration testing
software that contains exploits for various vulnerabilities. After

exploiting the service, the attacker accesses the machine, copies
a private SSH key, cracks its passphrase, and uses the key to
connect to another host via SSH. For the passphrase cracking,
John the Ripper tool was recommended. Given a text file with
passphrases, the john command performs a dictionary attack.

When the students of the course finished creating their games,
we added the logging module into the game configuration files.
Although the games differed in technical details, the toolset was
applicable to all of them. Afterward, all games were deployed
in the KYPO CRP [17].

B. Participants

From December 2019 to July 2020, we hosted four events
(game sessions), during which a total of 50 participants
(trainees) played one of the eight games mentioned above.
Each event lasted approximately two hours and had a diverse
participant population:

o undergraduate or graduate students of computer science at

our university, who have a basic cybersecurity background,

o security professionals, and

e senior high school students and bachelor students of

other universities, the finalists of the Czech national
cybersecurity competition.

The trainees attended voluntarily because of their interest
in security and were not incentivized in any way. None of the
trainees played any of the eight games before.

C. Privacy and Ethical Measures

Before the training sessions, we discussed the research with
the institutional review board of our university. We obtained a
waiver from the ethical committee since we intentionally do
not collect any personal information; the data are anonymous
and cannot be linked to individuals. The trainees agreed to the
anonymized data collection via informed consent. We ensured
they would not be negatively affected by the research, and
they had the right to stop participating at any time without any
restrictions. After the data collection, we manually checked
whether they typed any personal information in the CLI and
anonymized it. Only one student typed his real university login.

D. Methods of Data Processing and Analysis

Since all games had identical learning objectives and
vulnerabilities, we merged all the logs. Then, we wrote Python
scripts that parsed and analyzed the data. In addition to
quantitative statistics, two security instructors (authors of this
paper) exploratively analyzed the output of the automated data
processing. Their goal was to manually uncover deeper insights.
Since the scripts automatically presented aggregated results,
their interpretation was straightforward.

The analysis focused on cybersecurity tools. When prepro-
cessing the data, we removed extraneous whitespace and, when
applicable, disregarded the order of the arguments, which was
sometimes irrelevant. Apart from this sanitation, we did not
modify the trainee data.



V. RESULTS

This section presents the analysis results to answer the three
questions posed in Section I. Each question is addressed in
a separate subsection. The results demonstrate the value of
the collected command-line data. We also report our teaching
experience, educational insights, and implications for practice.

A. Use Case 1: Executed Commands

Table I provides an overview of the collected commands.
The most frequently used cybersecurity tool was nmap with
240 occurrences out of the 4439 commands in the whole
dataset. This was expected, since the initial task in all games
was to scan the target network. When looking not only at
cybersecurity-specific commands, 1s was the most frequent
(568 times), followed by cd (320 times), which corresponds to
the nature of the training that required traversing the filesystem.

TABLE I
OVERALL AND PER-TRAINEE STATISTICS OF COMMANDS ENTERED
BY THE 50 TRAINEES (PLAYERS OF THE CYBERSECURITY GAMES).

Command type Total Min Max Median Avg  Stdev
Linux Bash 3121 4 266 45 624 57.3
Metasploit 1318 213 17 264 36.3
Both types 4439 5 358 68  88.8 74.9

We now analyze how the trainees used three key command-
line tools in the games: nmap, ssh, and john. We also examine
the logs from the Metasploit console.

1) Terminal Commands: Nmap requires a target specifica-
tion, such as a hostname or an IP address. However, in 14
cases, the trainees attempted an nmap scan but did not specify
a target, which indicates misconceptions. Another interesting
observation was that although the task was to scan ports, the
option -sn that disables the port scan was used 13 times. An
IP address that belonged to a router was scanned 7 times. In 8
cases, the trainee made a typo in the target IP address since it
was off by one digit, but 9 other times they wanted to scan an
address that was not even in the training sandbox.

Using these findings, instructors can provide targeted feed-
back to students, for example, explain the causes of the mistakes
to the class. They can also use these insights to devise a
scoring rubric for assessment (for example, scanning a correct
IP address: 1 point).

Later in the game, the trainees obtained a private SSH key.
They had to crack its passphrase by executing a dictionary
attack using john. The most common mistakes among 201 john
commands in the dataset were not specifying the dictionary or
setting the option --wordlist to a folder instead of a file. After
cracking the passphrase, the trainees usually had no problem
connecting to a target host using ssh.

2) Metasploit Commands: Another task was to exploit a
host using Metasploit. The correct course of action was:

1) find suitable exploit modules using search,

2) select a correct module from the list using use,

3) configure module options using set, and

4) run the module using exploit or run.

The logs revealed the following misconceptions and unusual
activities of the trainees:

o instantly selecting the correct module without searching
for it in Metasploit, which suggests previous knowledge
of the attack or outside help,

o selecting a wrong exploit and attempting to run it,

o attempting to configure the module parameters with set
before selecting the module with use,

e incorrectly setting the machine initiating the exploit
(parameter LHOST) to the target host or other values,

o attempting to run the exploit before setting its parameters.

B. Use Case 2: First Commands Entered

We reconstructed the first high-level action of each trainee
from the first few commands. To illustrate, Table II is an
example of the first few commands of one trainee who
started scanning the target network. The trainee’s intention
was apparent despite some errors and irrelevant commands.

TABLE I
TIMELINE OF THE TRAINING’S START FOR A SELECTED TRAINEE
(SHORTENED), ALONG WITH A TIME DELAY BETWEEN TWO COMMANDS.

Time Command Command
[m:ss] delay [s]
0:00 N/A  nmap --help
0:55 55 nmap 172.18.1.5
3:11 136 pwd
3:14 3 1s
3:26 12 nmap --help
4:10 44 nmap -sV --p 10000 172.18.1.5
4:17 7  nmap -sV -p 10000 172.18.1.5

This work pattern was also the most commonly observed.
For 30 out of the 50 trainees, their first command was nmap,
in which half of them correctly set a target. In five other cases,
trainees started by familiarizing themselves with the network
configuration using ifconfig or ping.

At the start of the training, the trainees did not deviate from
the task and did not execute unusual commands. Nevertheless,
analyzing the first actions can still be beneficial. If an instructor
sees that a trainee started correctly, (s)he may devote more
time to aid others. If an instructor observes off-task behavior
at the beginning, (s)he can intervene early and help the trainee
by providing targeted hints.

C. Use Case 3: Time-based Statistics

Table IIT shows the statistics for two variables. The first is the
time spent playing, calculated as the time difference between
the first and the last command. The trainees usually spent about
an hour on the training, which is enough to record interactions
in depth. A slight limitation is that we cannot determine the
exact end time of the training from the command-line logs only.
The last submitted command does not necessarily mean the
end of the work on the task. The student could have continued
by using a GUI tool, consulting their progress with another
person, or searching for online help, for example.



TABLE III
TOTAL TIME SPENT ON THE TRAINING AND THE TIME DIFFERENCES (GAPS)
BETWEEN TWO SUCCESSIVE COMMANDS FOR THE 50 TRAINEES.

Min Max  Median Avg Stdev
Game time [m:ss] 16:10  1169:20 77:12  108:12  159:05
Avg gap [m:ss] 0:00 631:57 0:15 1:13 10:17

As expected, the time spent in the game positively correlates
with the number of submitted commands (Spearman’s p = 0.79).
This correlation is statistically significant (two-sided p-value
<1071, calculated by the Python scipy.stats module [53]).

The second variable in Table III is the time difference
between two successive commands. The median, average, and
standard deviation were first computed individually for each
trainee. The table reports the averages of these individual
quantities. The trainees usually submitted a command every
minute or so, which seems appropriate since they also read
the documentation and contemplated their approach.

The near-zero time differences occurred when a trainee copy-
and-pasted a command or used shortcuts such as “arrow up”
to repeat the previous command. Minor time differences were
observed when a trainee made an error, immediately recognized
it, and fixed it (see the last two lines in Table II). We also
observed differences smaller than the 15-second median when
the trainee was unsure how to use a command and applied a
trial-and-error method. Finally, a burst of commands in a short
period may indicate scripting or attempts to tamper with the
system, although we did not observe this in our data. On the
other hand, long idle periods can mean disengagement, need
for help, or technical issues with the learning environment.

VI. STUDY DISCUSSION

This section discusses the study limitations and proposes
future work that will use the command-line data.

A. Limitations of the Study

The results have two main limitations. First, the logs can only
indicate a problem, not explain why it occurs. We proposed
possible explanations, but they are yet to be confirmed in an
in-depth qualitative study with students. Nevertheless, the logs
authentically record the trainees’ progress, creating a basis for
targeted educational interventions.

Second, we focused only on the teacher’s perspective and
enhancing the instructor’s awareness of the classroom. It would
be interesting to close the feedback loop and evaluate how this
educational intervention impacts the students.

B. Educational Implications and Future Work

A CLI is difficult for beginners since it lacks a graphical
interface and is strict about using the commands properly.
Our toolset for collecting and analyzing the commands allows
instructors to better understand students’ behaviors, which is a
prerequisite for helping them learn.

This paper demonstrated three initial use cases. For the future,
we see more advanced research opportunities that require high-
quality command-line data. The possibilities are to:

Qualitatively analyze the causes of student mistakes and

misconceptions (for example, using interviews and think-

aloud protocols) and address them in the classroom.

o Perform pattern mining to find interesting association rules
and sequences in the student data and visualize them.

e Provide automated, personalized feedback to many stu-
dents at scale, both in real-time and after the training.

e Assess students, including partial credit for unfinished
solutions. Students can be graded for using (or not using)
a specific set of commands and their arguments.

e Measure learning in a pre-test/post-test study framework

to see whether the interventions achieved by analyzing

command-line data helped improve student achievement.

start
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Tool: 1d Type : command
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Fig. 4. Graph visualization of student’s progress through an exercise that
employs command-line tools.
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Fig. 5. Timeline visualization of student’s progress through an exercise that
employs command-line tools.



In our further ongoing research, we investigate methods
for graphical modeling of student’s steps (see Figure 4). The
proof-of-concept application automatically processes students’
command histories and maps them to a reference solution of
the training. It can display correctly achieved steps, errors, and
potential omissions. Another proof-of-concept web application
in Figure 5 displays an interactive timeline of the submitted
commands, allowing to filter correct or erroneous attempts.

VII. CONCLUSIONS

Command-line tools are used in almost all areas of com-
puting. In cybersecurity, they are essential both to learn about
cyber attacks and to set up defense mechanisms. Even today,
when security experts may also use sophisticated graphical
interfaces, tools controlled via a shell still form an essence of
cybersecurity operations. Therefore, learning and understanding
these tools is crucial to mitigate the current cyber threats.

We presented a modular toolset for logging commands from
Bash and Metasploit shell. It enables a data-driven understand-
ing of students’ approaches to practicing cybersecurity, system
administration, and networking. We deployed the toolset in
two learning environments and showed the value of the gained
data by analyzing student approaches. Since the toolset can be
applied in many other contexts, it can foster further research
and development, as we showed in Section VI-B.

Observing student actions in the training session is invaluable
for instructors to provide timely help to students during the
session or detailed feedback afterward. This is a substantial
innovation of typical practice when no information or only the
(in)correctness of the task solutions are recorded. Therefore,
this paper contributes to addressing a challenge that computing
instructors face. Although tinkering with a CLI is common for
students who are learning, if errors occur repeatedly, instructors
should know about that to intervene appropriately.

The logging toolset helps not only instructors and students of
cybersecurity, but also in other courses that feature command-
line tools, such as operating systems or networking. Observing
student actions is especially relevant in distance education
when instructors have limited awareness of what students do on
their computers. This proved invaluable in our online teaching
practice during the COVID-19 pandemic in 2020-2021. Most
of the analyzed data were collected from remotely held training
sessions, in which we would otherwise not have any awareness
about the students’ progress.

A. Contributed Artifacts

This paper’s supplementary materials contain four core
contributions for instructors, educational researchers, and
developers of interactive learning environments.

1) The toolset that can be integrated with existing learning
environments. We share configuration scripts (Ansible [36]
roles) that automatically deploy host-based logging to the
training sandbox similar to the one in Figure 1.

2) Educators can familiarize themselves with the toolset.
They can automatically set up a learning environment from
scratch on a personal computer using a single command.

We enable this by providing a Vagrant [54] definition
file that builds a locally virtualized learning environment
for a cybersecurity game. Moreover, the game includes
exercise assignments that can be completed in the learning
environment to practice cybersecurity skills.

3) We publish the collected data from the training sessions
studied in this paper, as well as others we conducted.

4) We provide analytical software that was used to process
and analyze the data.

All artifacts are linked from a single Zenodo repository [55]
and are available under permissive open-source licenses. Each
artifact contains detailed instructions to allow educators, re-
searchers, and developers to use our results in their contexts.
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