

Reinforcing Cybersecurity Hands-on Training With Adaptive Learning

Pavel Seda, Jan Vykopal, Valdemar Švábenský, Pavel Čeleda seda@fi.muni.cz

Masaryk University, Czech Republic

October 2021 @ FIE'21 conference

Problem Statement

Training input constraints

- High diversity of participants
- Different types of events
 - Arbitrary participants (students or professionals) for the same training instance

Training output implications

- High failure rate (around 50%)
 - Reduced training experience
 - Reduced learning outcomes

Goal of the Paper

Design a training format and model that assigns suitable tasks for each participant based on their knowledge and skills.

Expectations

- Increased learning efficiency
- Increased learning experience
- Decreased training failure rate
- The same training can be used for a wider audience
- Participants finish the training in an allocated time

Training Format Design

Current format

Proposed format

A is pre-training assessment, T_x is a task x, Q is a post-training questionnaire, and P_D is a phase decision node

Model Design – Collected Metrics From Participants

Data from portal

- Pre-training assessment
- Submitted answers
- Task completed time
- Solution displayed

Data from sandboxes

Shell commands

Model Design – Model

The model uses defined metrics to evaluate the participants' performance and to assign a suitable task

$$\boldsymbol{W}^{(x)} = \left(w_{ij}^{(x)} \right), i = 1, \dots, m, \quad j = \alpha, \beta, \gamma, \delta, \varepsilon$$
(1)

(2)

(3)

$$f(x) = \frac{\sum_{i=1}^{x} \left[p_i w_{i\alpha}^{(x)} + s_i \left(k_i w_{i\beta}^{(x)} + a_i w_{i\gamma}^{(x)} + t_i w_{i\delta}^{(x)} + w_{i\varepsilon}^{(x)} \right) \right]}{\sum_{i=1}^{x} \left(w_{i\alpha}^{(x)} + w_{i\beta}^{(x)} + w_{i\gamma}^{(x)} + w_{i\delta}^{(x)} + w_{i\varepsilon}^{(x)} \right)}$$

$$T_x = \begin{cases} n_x, & \text{if } f(x) \text{ is equal to } 0 \\ ext{trunc}(n_x[1-f(x)]) + 1, & ext{otherwise} \end{cases}$$

Setting Up the Model in the KYPO Learning Platform

Questionnair Answered	e Con in	ipleted Time	Key U:	word sed	Sol Disp	ution blayed	Subi Ans	mitted wers	Related Phase	
0 0	1	\$	0	\sim	1	0	0	0	3. Getting to know the environment	Allowed Wrong Answer Limit (Default 10) *
0 0	1	\$	0	0	1	<>	0	<>	4. Looking for server's IP address	Allowed Commands Limit (Default 10) *
0 0	1	\$	0	0	1	0	1	0	5. Connect to the server	Estimated Duration (Default 10)*
1 0	0	\Diamond	0	\odot	0	<>	0	0	6. Find interesting files	5

Pavel Seda et al. • Reinforcing Cybersecurity Hands-on Training With Adaptive Learning • October 2021 @ FIE'21 conference 8 / 14

Model Limitations

- The students' performance in a phase is evaluated in the same way in all tasks
- The observed metrics are binary
- The participants go through the training phase by phase
- It relies on the defined metrics (however, it can be enhanced or modified easily)

Model Evaluation – Case Study

Context and participants

- 24 participants (split among three events)
- University and professional learners

Learning environment

- KYPO Cyber Range Platform
- See our FIE'21 paper Scalable Learning Environments for Teaching Cybersecurity Hands-on https://muni.cz/en/research/publications/1783808

Adaptive training instance

Linux tools, port scanning, secure shell, secure copy, and cracking ZIP files

Case Study Results

- Results from post-training questionnaire:
 - Participants reported that the training difficulty was adequate
 - **88%** of the participants finished the training without taking a solution
- Participants' transitions through the training

Recommendations for Instructors

- The pre-training assessment questionnaire should be simple and brief
- Adjust the weights in the model carefully
- Design at least three tasks for each phase
- Allocate more time for participants to complete the base phases than you expect

Conclusion

Traditional approach

- Difficult to accomplish training outcomes for a wider audience
- High failure rate

Research to practice - adaptive training instances

- Proposed model for cybersecurity adaptive training
- Improved participants' experience
- Decreased training failure rate
- Training instances can attract wider audience

Ongoing work

• Verification of the model with a larger amount of training instances and events

Get notified about the upcoming follow-up papers on the adaptiveness of cybersecurity training.

https://twitter.com/cybersecmuni

Thank you! Questions and feedback are welcome. You can also e-mail me at seda@fi.muni.cz.

MUNI FACULTY OF INFORMATICS