

Scalable Learning Environments for Teaching Cybersecurity Hands-on

Jan Vykopal, Pavel Čeleda, Pavel Šeda, Valdemar Švábenský, Daniel Tovarňák vykopal@fi.muni.cz

Masaryk University, Czech Republic

October 2021 @ FIE'21 conference

Cybersecurity Hands-on Classes

- Learners interact with networks of full-fledged operating systems and devices that emulate real-world systems.
- Learners' interaction is driven by a learning environment with or without a human instructor's assistance.
- Each student or team works with an own instance of the lab environment.

Generic structure of training with several phases (P), optional questionnaires (Q), and informative phases (I).

Problem Statement

Cybersecurity hands-on classes do not scale.

- Preparation requires a substantial effort.
- Delivery issues in large classes.
- Providing feedback and analyzing learning gains is difficult.

Goal of the Paper

Enable scalable teaching of cybersecurity hands-on classes using interactive learning environments.

Building Blocks of a Cybersecurity Hands-on Class

- Sandbox an isolated environment for practicing cybersecurity skills.
- Class Delivery Method a computer-assisted instruction that employs the sandbox.
- **Learning Analytics** components analyzing students' interactions in the sandbox and the class delivery.

Building Blocks - Scalable Approach I

Sandbox Definition = Topology Definition + Provisioning Definition

- Structure of the networks and hosts and their configuration.
- Topology definition of a sandbox in YAML.

networks: name: server-switch cidr: 10.10.20.0/24 name: home-switch cidr: 10.10.30.0/24 net_mappings: host: server network: server-switch ip: 10.10.20.5 host: home network: home-switch ip: 10.10.30.5

Building Blocks - Scalable Approach II

Provisioning Definition – configuration changes at the hosts in the topology definition.

- Used to customize the **base boxes** a minimal installation of a particular OS.
- Specifies applications and data that have to be provisioned at the base boxes.
- Input for software configuration management system; we use Ansible.
- More flexibility in preparing the sandbox reuse of the definitions for other classes.

Building Blocks - Scalable Approach III

• Example of a provisioning definition with two tasks installing a web server and provisioning files of a web application at the host named server.

Building Blocks - Scalable Approach IV

Training Definition – machine-readable description of consecutive tasks that have to be solved by each student.

Example of one training phase with two hints in a JSON format:

```
"title": "Looking for a vulnerable service.".
"max score": 100.
"level type": "TRAINING".
"order": 1.
"estimated duration": 5.
"flag": "service-name-1.23".
"content": "Now you need to scan the server to find
  possible vulnerabilities. The IP address of
  the server is **10.1.26.9**. The name of the
  vulnerable service starts with \"s\". \n\n
  As a flag, submit the name of the vulnerable
  service in the following format: service-version .
  All characters are lowercase. For example:
  dvwa-2.050 .",
"solution": "``root@attacker:~# nmap -sV
  -p 10000 10.1.26.9\n```\n\n
  The flag is: **service-name-1.23**".
```

```
"hints": [ {
  "title": "Which port should you scan?",
  "content": "The vulnerable service is running on
    port 10000. You can also pass this information
    to nmap (**-p \"port range\"**).",
  "hint_penalty": 10,
  "order": 1
  },
  {
  "title": "Which tool should you use?",
  "content": "You should use **mmap** to scan the
    server (see **man nmap**).",
  "hint_penalty": 10,
  "order": 0
  } ],
  "incorrect_flag_limit": 100,
```

Building Blocks - Scalable Approach V

Learning Analytics Stack – a mechanism of processing **events** from the environment.

- Events capture **interactions of the student** with the environment: sandbox and class delivery method (training).
- Events are machine-readable strings logged using the Syslog protocol (RFC 5424) in a predefined format.
- The learning environment forwards all events to the **central storage**, which transforms and further processes them.
- The central storage uses the **ELK stack** Elasticsearch, Logstash, and Kibana.

Building Blocks - Scalable Approach VI

Command **ssh alice@server** executed by a student in the Linux terminal at a machine in the sandbox, timestamped and logged into Syslog.

```
{
  "timestamp": "2021-02-17T09:17:33+02:00",
  "username": "root",
  "host.ip": "10.10.40.5",
  "wd": "/home",
  "cmd": "ssh alice@server",
  "cmd_type": "bash-command",
  "sandbox_id": "1"
}
```

More details in the following paper:

https://www.muni.cz/en/research/publications/1783801

An event of submission of an **incorrect answer** .invoices2019 to a task in a training phase.

```
{
  "flag_content": ".invoices2019",
  "actual_score_in_level": 100,
  "total_score": 300,
  "game_time": 3045985,
  "timestamp": 1610618680221,
  "type": "events.trainings.WrongFlagSubmitted",
  "count": 1,
  "user_ref_id": 19,
  "phase_id": 36,
  "training_cun_id": 28,
  "training_instance_id": 12,
  "training_definition_id": 7,
  "sandbox_id": 104,
  "pool_id": 40
```

Learning Environments

Based on the common components, we developed two learning environments:

- **KYPO Cyber Range Platform** (KYPO CRP) a cloud-based platform for running multiple classes in parallel or classes requiring sandboxes with many hosts.
- **Cyber Sandbox Creator** (CSC) lightweight, distributed lab environment using a computer in a school lab or students' own desktop or laptop.
- Both environments use the same formats for topology, provisioning, and training definitions, and the same formats of events processed by learning analytics stack.
- Instructors can choose the environment that better suits their needs.

KYPO Cyber Range Platform Architecture

Cyber Sandbox Creator Architecture

Use Case – Formative Assessment in Large Classes

- Students gain hands-on experience with using various cybersecurity tools.
- Using CSC, everyone can deploy the sandbox locally on their own computer.
- CSC is suitable in **low-stakes contexts** (students can see the sandbox definition).
- Local deployment does not need any cloud resources (unlike KYPO CRP).
- Teachers need to prepare **detailed setup instructions**, as well as be ready to troubleshoot the setup.

Use Case - Summative Assessment

- In summative assessment (final exam, competition), we need to hide the sandbox definitions from students.
- KYPO CRP provides access to the sandbox deployed in a cloud.
- Students connect to the machines in the sandbox, but cannot see their definitions.
- Teachers can control the visibility of hosts in the sandbox topology (students initially start at one machine).

Conclusions

- We provide **scalable and reusable building blocks** for cybersecurity hands-on classes.
- We exploit these blocks for developing **two learning environments**:
 - KYPO Cyber Range Platform cloud-based → OpenStack,
 - Cyber Sandbox Creator host-based → VirtualBox.
- Open definitions of formats enable educators to **enhance and edit** the existing lab environments **without much additional effort**.
- The environments have been used in **teaching at multiple institutions** since 2019.
- Both environments have been released as open-source software.

Publicly Available Contributions

KYPO Cyber Range Platform source code

★ https://gitlab.ics.muni.cz/muni-kypo-crp

KYPO Cyber Range Platform documentation

☐ https://docs.crp.kypo.muni.cz

Cyber Sandbox Creator source code

♦♦ https://gitlab.ics.muni.cz/muni-kypo-csc/cyber-sandbox-creator

Full paper and slides

☐ https://www.muni.cz/en/research/publications/1783808

Stay in Touch

Jan Vykopal

MUNI KYPO Portal

☐ https://kypo.muni.cz

KYPO Cyber Range Platform

https://twitter.com/KYPOCRP

Cybersecurity Laboratory

https://twitter.com/cybersecmuni

MUNI FACULTY OF INFORMATICS