D 2021

One Size Does Not Fit All: Finding the Optimal Subword Sizes for FastText Models across Languages

NOVOTNÝ, Vít, Eniafe Festus AYETIRAN, Dalibor BAČOVSKÝ, Dávid LUPTÁK, Michal ŠTEFÁNIK et. al.

Basic information

Original name

One Size Does Not Fit All: Finding the Optimal Subword Sizes for FastText Models across Languages

Authors

NOVOTNÝ, Vít (203 Czech Republic, guarantor, belonging to the institution), Eniafe Festus AYETIRAN (566 Nigeria, belonging to the institution), Dalibor BAČOVSKÝ (203 Czech Republic, belonging to the institution), Dávid LUPTÁK (703 Slovakia, belonging to the institution), Michal ŠTEFÁNIK (703 Slovakia, belonging to the institution) and Petr SOJKA (203 Czech Republic, belonging to the institution)

Edition

Varna, Bulgaria, Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021), p. 1068-1074, 7 pp. 2021

Publisher

INCOMA Ltd.

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

60203 Linguistics

Country of publisher

Bulgaria

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

RIV identification code

RIV/00216224:14330/21:00122017

Organization unit

Faculty of Informatics

ISBN

978-954-452-072-4

ISSN

Keywords (in Czech)

fastText; učení reprezentace; slovní analogie; optimalizace hyperparametrů; modelování jazyka; vzdálenost jazyků

Keywords in English

fastText; representation learning; word analogy; hyperparameter optimization; language modeling; language distance

Tags

International impact, Reviewed
Změněno: 23/5/2022 14:55, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

Unsupervised representation learning of words from large multilingual corpora is useful for downstream tasks such as word sense disambiguation, semantic text similarity, and information retrieval. The representation precision of log-bilinear fastText models is mostly due to their use of subword information. In previous work, the optimization of fastText's subword sizes has not been fully explored, and non-English fastText models were trained using subword sizes optimized for English and German word analogy tasks. In our work, we find the optimal subword sizes on the English, German, Czech, Italian, Spanish, French, Hindi, Turkish, and Russian word analogy tasks. We then propose a simple n-gram coverage model and we show that it predicts better-than-default subword sizes on the Spanish, French, Hindi, Turkish, and Russian word analogy tasks. We show that the optimization of fastText's subword sizes matters and results in a 14% improvement on the Czech word analogy task. We also show that expensive parameter optimization can be replaced by a simple n-gram coverage model that consistently improves the accuracy of fastText models on the word analogy tasks by up to 3% compared to the default subword sizes, and that it is within 1% accuracy of the optimal subword sizes.

Links

MUNI/A/1573/2020, interní kód MU
Name: Aplikovaný výzkum: vyhledávání, analýza a vizualizace rozsáhlých dat, zpracování přirozeného jazyka, umělá inteligence pro analýzu biomedicínských obrazů.
Investor: Masaryk University