System for Continuous Collection of Contextual Information for
Network Security Management and Incident Handling

Martin Husak
Institute of Computer Science
Masaryk University
Brno, Czech Republic
husakm@ics.muni.cz

ABSTRACT

In this paper, we describe a system for the continuous collection of
data for the needs of network security management. When a cyber-
security incident occurs in the network, the contextual information
on the involved assets facilitates estimating the severity and impact
of the incident and selecting an appropriate incident response. We
propose a system based on the combination of active and passive
network measurements and the correlation of the data with third-
party systems. The system enumerates devices and services in the
network and their vulnerabilities via fingerprinting of operating
systems and applications. Further, the system pairs the hosts in the
network with contacts on responsible administrators and highlights
critical infrastructure and its dependencies. The system concen-
trates all the information required for common incident handling
procedures and aims to speed up incident response, reduce the time
spent on the manual investigation, and prevent errors caused by
negligence or lack of information.

CCS CONCEPTS

« Security and privacy — Network security; Vulnerability
management; - Applied computing — Operations research.

KEYWORDS

Cybersecurity, Network Monitoring, Cyber Situational Awareness,
Incident Response, Incident Handling

ACM Reference Format:

Martin Huséak, Martin Lastovic¢ka, and Daniel Tovarnak. 2021. System for
Continuous Collection of Contextual Information for Network Security
Management and Incident Handling. In The 16th International Conference on
Availability, Reliability and Security (ARES 2021), August 17-20, 2021, Vienna,
Austria. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3465481.
3470037

1 INTRODUCTION

Today’s network’s rising complexity makes it more and more chal-
lenging to be aware of all the devices, services, users, and other
entities in the network. Namely, in large and heterogeneous net-
works of thousands of devices and users, even the network and
system administrators may lose track of the assets under their
control. The situation is harder for cybersecurity experts, such as

ARES 2021, August 17-20, 2021, Vienna, Austria

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in The 16th International
Conference on Availability, Reliability and Security (ARES 2021), August 17-20, 2021,
Vienna, Austria, https://doi.org/10.1145/3465481.3470037.

Martin Lastovicka
Institute of Computer Science
Masaryk University
Brno, Czech Republic
husakm@ics.muni.cz

Daniel Tovarnak
Institute of Computer Science
Masaryk University
Brno, Czech Republic
husakm@ics.muni.cz

the members of the incident response teams (CSIRT/CERT) and
security operations centers (SOC). Without proper documentation,
the expert knowledge, including the history of security incidents
and awareness of the local environment, is also hardly transferable
between members of the cybersecurity team.

A specific problem we approach is the continuous collection of
contextual information for a security team’s needs. Such a team
may be equipped with a plethora of tools for intrusion detection or
vulnerability assessment. A security incident typically starts with
an alert from an intrusion detection system (IDS), discovering a vul-
nerability, or a report by a user or a third party. There are typically
one or more devices involved in such cases, either as a source or
target of an attack or as a vulnerable machine. To select the most
appropriate incident response procedure, the incident handler (i.e.,
the member of the cybersecurity team responsible for resolving the
incident) needs contextual information on all incident actors. In
many cases, the incident handler starts only with an IP address or
hostname stated in an IDS alert. Potentially helpful pieces of infor-
mation include the device’s location, contact on its administrator or
primary user, name and version of the operating system, and a list
of software, services, and vulnerabilities on the system. Further, the
incident handler may find it helpful to know if the device is a part or
a dependency of the critical infrastructure of an organization and if
it has a history of security incidents. By knowing such information,
the incident handler may select an appropriate incident response,
which may be as simple as sending a warning to the user or admin-
istrator, or restrictive, leading to turning the device off or filtering
its network communication at a firewall, depending on the severity
and potential impact of the incident. Failure to acknowledge the
contextual information may lead to restricting devices vital to the
infrastructure, wasting the capacities on low-importance incidents,
or letting the severe incidents continue.

To approach the problem stated above, we propose a system!
for the collection of contextual information on the network for
the needs of incident response. The system is designed to contin-
uously monitor the network, obtain and update information on
hosts in the network, and provide the data in a comprehensive
manner. The system is based on active and passive network moni-
toring, namely network flow monitoring and active probing, and
uses commonly available tools and approaches. The system design
goal is to use the existing network monitoring infrastructure to
provide additional services with minimal overhead. The system is
modular and consists of an orchestration service, database, and a set
of data-collecting components. Some components use passive net-
work monitoring to enumerate hosts and services in the network,

Uhttps://is.muni.cz/publication/1724696/crusoe_observe.zip

https://orcid.org/0000-0001-7249-9881
https://orcid.org/0000-0002-6604-6947
https://orcid.org/0000-0002-7206-5167
https://doi.org/10.1145/3465481.3470037
https://doi.org/10.1145/3465481.3470037
https://doi.org/10.1145/3465481.3470037
https://is.muni.cz/publication/1724696/crusoe_observe.zip

ARES 2021, August 17-20, 2021, Vienna, Austria

estimate their dependencies, and fingerprint their operating sys-
tem and applications, while other components complement them
with active probing. Further, the data are correlated with internal
and external knowledge, such as local partitioning of the network,
history of local security incidents, and third-party vulnerability
databases. The system is backed by a graph database, which allows
comprehensive representation of the data and high flexibility in
correlating the data and adding interesting entities and relations.
The system provides the user, e.g., incident handler, with all the
collected contextual information on any network entity. The data
are timely, regularly updated and cleansed, and enable instantly
achieving situational awareness in the incident response.

This paper is structured into five sections. After the introduction,
we summarize the background and related work in Section 2. The
design and implementation of the system are presented in Section 3.
Section 4 summarizes the experience from the deployment of the
system in a live environment. Section 5 concludes the paper and
paves the way for future work.

2 BACKGROUND AND RELATED WORK

Background and related work to the topics discussed in this paper
can be viewed in three dimensions, theoretical, procedural, and
technological. The theoretical dimension is derived from the theory
of decision-making and stresses the importance of having the right
data at the right time. The procedural dimension emerges from the
processes of incident response in cybersecurity teams and pinpoints
particular requirements on the proposed system. The technological
dimension contains the tools and approaches used to collect the
required information via active and passive network monitoring.

2.1 Cyber Situational Awareness

This work was vastly inspired by the theoretical foundations of situ-
ational awareness and decision-making. Situational awareness was
extensively studied in military and aviation and is gaining recog-
nition in cybersecurity as cyber situational awareness (CSA) [7].
Following the widely-used definition, (cyber) situational awareness
is the perception of the elements in the (cyber) environment within a
volume of time and space, the comprehension of their meaning, and
the projection of their status in the near future [3, 6, 10]. CSA builds
upon the perception of the cyber environment, without which one
cannot fully understand the situation nor project its changes. An
alternative term is network-wide situational awareness [10, 17].
Similarly, decision-making theory describes models illustrating
the need for monitoring and information collection and places it as
a prerequisite for making a decision. For example, the incident han-
dler may follow the OODA loop (Observe, Orient, Decide, Act) [24],
in which there is first the need to collect the information (Observe),
analyze them (Orient) before making a decision (Decide), and acting
accordingly (Act). If the conditions change, the loop returns to the
Observe phase and the perception of a new set of information.
Achieving CSA requires a vast range of heterogeneous informa-
tion provided by a plethora of existing tools [4]. Liu et al. [17] stated
that multi-source, heterogeneity, and real-time are the most impor-
tant characteristics a network security situational awareness system
should embody. However, it is difficult to correlate the data from
heterogeneous sources in real-time, namely because many of them

M. Husék et al.

produce big data [6]. Nevertheless, complex tools to enable CSA
were proposed in the past, such as Cauldron [8] or CyGraph [21].
However, such complex tools are often too complicated to be used
effectively, namely due to the high number of required inputs that
could not always be provided in practice [9].

2.2 Cybersecurity Incident Handling

Incident handling is a fundamental activity provided by a cybersecu-
rity team. The procedures of incident handling are well structured
and formalized in the literature and typically adjusted to the inci-
dent response teams’ local environment. However, each environ-
ment is different, and each team uses a different set of tools to gather
data, which makes it hard to come up with technical details, best
practices, and supporting tools. Nevertheless, the key principles
are well documented and widely adopted by practitioners.

The Computer Security Incident Handling Guide [2] by NIST
promotes situational awareness in several aspects, mainly in terms
of collaboration between cybersecurity teams and user awareness.
The most important message is that "an organization can best quan-
tify the effect of its own incidents because of its situational awareness."
Further, there is a need to ensure that incident response procedures
are in sync with business continuity processes. The business conti-
nuity planning professionals should be made aware of the incidents
and their impact and are valuable in planning responses to certain
situations. However, gaining and maintaining situational aware-
ness, including the knowledge of the business continuity, does not
scale well and is problematic in large-scale networks.

The Incident Handler’s Handbook [11] by the SANS Institute
does not mention situational awareness specifically but includes
highly relevant entries in the incident handler’s checklist. For ex-
ample, the incident handlers are reminded to identify not only the
source and location of the incident but also its business impact and
its scale. Further, the incident handler should plan the following
steps (containment, eradication, recovery) by questioning whether
the impacted systems can be isolated, patched, turned off, or kept
running. The incident handler has to be aware of the impacted hosts,
their neighborhoods, and dependencies to properly plan the course
of action. Similarly, the incident management guide by ENISA [19]
provides practical examples of situational awareness-related issues
of incident handling without addressing them specifically. Readers
are kindly referred to all three documents for more information.

2.3 Active and Passive Network Monitoring

CSA can be achieved by processing a vast range of heterogeneous
data from various tools, including IDS, vulnerability scanners, and
network traffic analysis. For example, the information on vulner-
abilities involves discovering vulnerabilities in the network (e.g.,
via dedicated vulnerability scanners) and consulting third-party
databases with detailed information on known vulnerabilities. An
example of a measurable event is an attack signature detected and
reported by an IDS.

In this work, we propose an approach based on network-wide
active and passive monitoring. Passive monitoring is represented
by network flow (NetFlow) technology [5], a popular tool among
the cybersecurity community. NetFlow monitoring aggregates net-
work connections into 5-tuples (source IP, destination IP, source

Collection of Contextual Information for Incident Handling

port, destination port, protocol) and collects additional informa-
tion, such as length of the connection or the number of bytes and
packets exchanged. Although NetFlow does not process the packet
payload, it provides sufficient visibility into network traffic even in
high-speed and large-scale networks; and can be used for intrusion
detection [22] and traffic analysis, including the analysis of en-
crypted traffic [16]. It is worth mentioning that the tools to support
situational awareness using NetFlow were proposed in the past.
However, such tools focused more on the visualization of network
connections, such as in NVisionIP [12] and VisFlowConnect [23],
or the combination of intrusion detection, service detection, and
visualization, such as in Nfsight [1]. In our work, we focus on the
combination of data from multiple sources and their correlation,
not solely on NetFlow data, and we leave visualization for future
work as it is a hard task on its own.

Active network monitoring is represented by a well-known
Nmap tool [18]. Active probing can be used to check the liveness of
a host, discover open network services, or get a host’s fingerprint.
It is also a popular choice for vulnerability scanners, e.g., tools that
discover vulnerabilities on hosts in the network [15]. Both active
and passive network monitoring have their benefits and drawbacks,
but the combination of their outputs can be very powerful.

3 SYSTEM DESIGN AND IMPLEMENTATION

In this section, we describe the proposed system for the continuous
collection of contextual information for network security manage-
ment. First, we provide a design overview and a description of
common components. Second, we describe the design of the data
collection component that perform the crucial tasks.

The requirements on the proposed system were distilled from
the requirements on CSA systems in the NATO Cyber Defense
Situational Awareness Request for Information [20]. The 35 use
cases frequently mention views on assets and their interconnec-
tivity, dependencies, and historical incidents. We also embraced
the issues of system modularity and deployability. On the contrary,
we did not consider the use cases related to visualization, training,
and simulation because we perceive them as out of the scope of
our work or candidates for future work. The interviews with prac-
titioners [9] added two more requirements. First, the contacts on
persons responsible for the administration of hosts and services
in the network should be easily accessible for incident handlers,
which is an issue in large networks with many departments and
their local IT staff. The incident handlers often lose time on finding
the right person to resolve an incident with. Second, the incident
handlers would appreciate the automation of triage, i.e., prioritizing
the incidents by their severity and significance [19].

It is worth mentioning that the requirements are not strict. Even
with lower confidence, any piece of information is valuable as
it provides at least some context. The goal is not to provide the
incident handler with all the information at the highest quality
because that would be enormously difficult to achieve. The goal
is to gather the basic information on hosts in the network that
would otherwise be unknown to the incident handler. Thus, in this
case, we prefer a network-wide solution with lower precision over
a specialized solution with limited scope.

ARES 2021, August 17-20, 2021, Vienna, Austria

Orchestration Service

Passive Network Monitoring Active Network Monitoring

A
Y

T T

NetFlow Collecto
Component |

Active Network
Monitoring Component

Passive Network
Monitoring |

Webchecker
Component

A
Y

CMS Detection
Component

OS Fingerprinting
Component |

Y

Criticality N
Estimator Local information sources
RTIR Connector
Third-party_information sources <
CVE < >
Connector Netlist Connector
(_
R — \ 4
NeodJ <—>| Database Adapter «—> REST API
«

Figure 1: System scheme and its components.

A typical user of our proposed system is a cybersecurity team
of an organization that operates a large computer network (e.g.,
thousands of computers and users). Such networks are often hetero-
geneous and partitioned into many segments of various characteris-
tics (e.g., servers, desktops, organization’s departments). While the
network, hosts, and services can be operated by numerous local or
network-wide IT administrators, we assume a single cybersecurity
team responsible for the security of the whole network or orga-
nization. Further, we assume that the team has the capabilities to
monitor the network via passive network traffic monitoring and is
allowed to perform active network monitoring (scanning, probing).

3.1 Design and Common Components

The software is modular and consists of common components and
a set of data collection components. The scheme of the system is
depicted in Figure 1. The common components are the orchestration
service, database, and database adapter. The orchestration service
schedules and executes the runs of the data collection components.
The data produced by the components are saved in the shared
database via the database adapter. The data collection components
are grouped in several logical blocks; each block’s components
provide similar functionality (e.g., asset discovery or vulnerability
assessment) or process the same input data (e.g., network flows or
incident history). The data collection components are described in
detail in the following subsection.

The orchestration service is responsible for running the data
collection components; each run is referred to as a task. Each task
has its role, which defines its timing and execution parameters. The
records on the execution are logged, so it is possible to trace if the

ARES 2021, August 17-20, 2021, Vienna, Austria

task finished or failed, execution time, output, and possible errors.
When the orchestration service runs a task and the task finishes
successfully, the orchestration service is responsible for storing the
outputs into the database by calling the database interface. The
orchestration service itself does not implement any business logic
or data processing apart from forwarding the data from components
to the database.

The implementation of the orchestration service is based on Cel-
ery task queue?, supported by the monitoring system Flower? and
in-memory database Redis?. An interesting feature of the orches-
tration system is managing a computing cluster using the master-
worker architecture. One master orchestrates the tasks in such a
case, and one or more workers run the tasks. This is advantageous
for several components, namely, for the components of active and
passive network monitoring. For example, the NetFlow data are
large in volume, so it is more efficient to run the worker on the
NetFlow collector than access the data remotely from the master.
In the case of active network monitoring, we may take advantage
of several observation points in the network and run the workers
on one or more hosts that provide better visibility in the network,
e.g., due to a lack of firewalls between the observation points and
the scanned hosts.

The system is backed by a graph database, in which the data are
stored in the form of a graph with identified entities (e.g., IP ad-
dresses, software instances, and vulnerabilities) as nodes and their
relations as edges. The graph-based approach facilitates data mod-
eling and extensibility of the database and is easy to visualize and
comprehend. In our system, we use the Neodj database®, one of the
most technologically mature solutions at the moment. A database
adapter was implemented to receive new data from data collection
components via REST API and insert them into the database using
the Cypher language used in Neo4j. Thus, the data collection com-
ponents are independent of the database implementation (they do
not have to create their own Cypher commands), and the database
can be fully replaced if needed. The data (entities and relations) are
structured according to the CRUSOE data model [9]. In practice,
however, several minor corrections had to be made in the data
model, and many particular parameters of nodes and edges had
to be specified, namely to facilitate data input from the tools and
components used for data collection. Further, the data are accessible
via another REST API that implements the endpoints providing
CRUD (Create, Read, Update, Delete) functionality for the entities
specified by the data model. Both REST APIs are implemented using
the Django framework®.

3.2 Data Collection Components

The data collection components conduct the collection of the partic-
ular pieces of information. Each component operates independently,
except for the NetFlow-processing components that rely on the
data provided by the NetFlow collector component. However, the
components often overlap in the types of data they insert into the

https://docs.celeryproject.org/en/stable/
3https://flower.readthedocs.io/en/latest/
https://redis.io/

Shttps://neodj.com/
Shttps://www.djangoproject.com/

M. Husék et al.

database. In most cases, they fill in additional parameters to enti-
ties and relations identified by an arbitrary component. In several
cases, the same information can be obtained by more components,
such as in the case of OS or service fingerprinting and vulnerability
discovery. However, this is more of an advantage; the components
rather complement each other; some may provide more detailed
or precise information, while others may have a broader range.
Further, it is up to the operators to select which components to
use, replace, or implement on their own. The list and description of
existing components follow.

3.2.1 NetFlow Collector Connector. This connector is a supporting
component that facilitates NetFlow data processing. While most
of the components either collect the data on their own or run a
tool to collect them, it is not straightforward to do so with the
NetFlow data used in passive network monitoring. In a typical
setting, NetFlow records are generated by a router or a dedicated
device (NetFlow probe) and forwarded to a NetFlow collector, where
they are stored and analyzed. The NetFlow data are large in volume
and, thus, difficult to handle. If our proposed system is deployed
on a dedicated host, there is a need to either enable remote access
to the NetFlow collector’s data or copy them to the dedicated host.
We implemented a component that remotely accesses the NetFlow
collector via SSH and queries the NetFlow data via the Nfdump
tool that should be installed on the collector. Thus, the NetFlow-
processing components can access and query the data remotely and
receive only the data that are required by the component. Although
commercial NetFlow collectors provide REST API or other options,
SSH remains a usable, vendor-independent solution.

3.2.2 Passive Network Monitoring Component. This component
analyzes network traffic records to detect running hosts in the
network and identify their services and software. The component’s
output is a list of active IP addresses and their identified services
and pieces of software. The component consists of three modules
(run, core, and rules) that logically separate the data processing
steps. Further, the component contains three subcomponents that
implement particular analytical features. The subcomponents are
operated separately, and their outputs are then merged into one
common output forwarded to the database.

First, the run module loads input data, initializes and runs the
subcomponents while providing them with input data, and saves the
subcomponents’ outputs in a file. Second, the core module provides
common functions to the subcomponents, such as manipulating
the input data and the functions and data structures to save the
outputs. The software identification is formatted in CPE’ strings
(vendor:product:version) to facilitate their later processing. Finally,
the rules module provides the support for subcomponents that
use algorithmically sophisticated techniques. The module enables
specifying a set of rules in a JSON file. Each rule specifies a set of
conditions in the form of regular expressions, numerical values, and
value ranges. If the conditions are met (i.e., the regular expressions
are matched in the network flows and numerical values fall in a
specified range), a set of information keys specified in the rules is
put on the output.

https://nvd.nist.gov/products/cpe

https://docs.celeryproject.org/en/stable/
https://flower.readthedocs.io/en/latest/
https://redis.io/
https://neo4j.com/
https://www.djangoproject.com/
https://nvd.nist.gov/products/cpe

Collection of Contextual Information for Incident Handling

The first subcomponent detects which antivirus software is run-
ning on hosts in the network. The detection method uses a pre-
defined list of rules describing network connections to hosts and
services associated with particular antivirus software, such as a
network connection to an update repository. For example, if a ma-
chine initiates a connection with the vendor’s server, the machine
is marked as running the vendor’s antivirus software. If more rules
are matched, the antivirus associated with the most frequently
matched rule is assigned to the machine.

The second subcomponent identifies the web browser used on
the machine. Two methods are used here. First, similarly to antivirus
detection, a communication with IP addresses, domain names, and
services specific to a particular browser (update server, cloud ser-
vices) is described in the rules. Second, the User-Agent can be
extracted from HTTP communication. The User-Agent string is
parsed, and the identification of the browser is extracted.

Finally, the third subcomponent uses machine learning to iden-
tify services in the network. The machine learning method is first
trained using the network flows containing NBAR2 signatures®. A
classifier is constructed using the features, such as traffic volume,
packet size, packet distribution over time, and TCP/IP header set-
tings. Thus, the method is capable of estimating the services and
software running on hosts in the network.

3.2.3 Passive OS Fingerprinting Component. Passive OS fingerprint-
ing could be implemented as a subcomponent of the passive net-
work monitoring component. However, the task is an interesting
research problem going through rapid development [13, 14, 16],
and, thus, the component is developed separately. The goal is to
identify the operating system of a machine in the network by ana-
lyzing the machine’s network traffic. Three major methods were
described in related work, detection of communication with spe-
cific domains, analysis of HTTP User-Agent, and analysis of default
values of TCP/IP header fields [13]. The TCP/IP header analysis was
further improved with machine learning [14]. The implementation
uses all three of them, their outputs are combined and the most
frequently identified OS is selected as a result. The specific domains
include Internet connection check services, update servers, teleme-
try, and other communication types, based on expert knowledge.
The method based on the analysis of TCP/IP headers uses three pa-
rameters, IP TTL, TCP SYN Size, and TCP Win Size, which all have
default values specific to particular operating systems. The User-
Agent analysis is getting obsoleted and will soon be replaced due
to the still growing adoption of encrypted network traffic, which
prevents passive analysis of HTTP traffic parameters [16].

3.24 Active Network Monitoring Component. Active network mon-
itoring (scanning, probing) complements passive network measure-
ments; the two approaches overlap in the enumeration of active
hosts and services in the network and their fingerprinting. The ac-
tive probing further enables network topology discovery. Nmap [18]
is the well-known and widely-used tool for active probing with
many additional features. We designed a component consisting of
three modules.

8https://www.cisco.com/c/en/us/products/ios-nx-os-software/network-based-
application-recognition-nbar/index.html

ARES 2021, August 17-20, 2021, Vienna, Austria

The Scanner module was designed to scale for large networks,
in which the scanning may take a non-trivial amount of time. The
design takes advantage of parallel scanning from multiple devices
and splitting the scanned IP range into smaller parts that can be
processed separately and merged into a common output. Two types
of scans are performed, network scan and topology scan. First, the
network scan is executed to discover running hosts and services in
the network and to identify the software they use. The 100 most
commonly used ports (Nmap’s --top-ports [18]) are scanned on each
IP address. If an open port is found, the advanced features of Nmap
are used to further probe the service on the port to identify its
software and version and export it as a CPE string. In the context of
this work, the most important use case is the search of the CPE in
vulnerability databases to find vulnerabilities that may be present
on a system identified by the CPE [15]. Second, the topology scan
is executed to map the network topology and distinguish active
network devices from end hosts. The scan is executed using Nmap’s
traceroute method, not via the traceroute Linux command, to allow
for scanning on particular ports. In order to bypass firewall rules
and cover as much IP address space as possible, the scanning uses
TCP ports 80 and 443. Only if those ports are filtered, the default
ICMP traceroute is used. The scanning from one observation point
discovers the paths between the scanning host and the scanned
hosts. However, such a scan produces only a tree structure that
does not reflect redundant paths and cycles in the network topol-
ogy. Thus, there is a need to execute the scanning multiple times
from multiple observation points located in distinct physical and
logical segments of the network. The more observation points and
repetitions are used, the more is the network topology map similar
to the actual network topology.

The Parser module reads the outputs of Nmap and searches the
entities and relations specified by the database model. The scanning
is performed at multiple locations, and, thus, the parser has to merge
the outputs and correctly add new entities and update existing ones.

Finally, the Cleaner module deals with the problem related to
scanning in discrete time intervals. The hosts and services in the
network can be arbitrarily deactivated or stop responding. Thus,
the scans may be interrupted in the process. Namely, in the case
of traceroute scanning, which takes a longer time, there is a need
to ensure that lost connections and unfinished scans will not be
included in the results.

3.2.5 Webchecker Component. In recent years, due to the wide
adoption of HTTPS, a new task for cybersecurity teams emerged; it
became important to check if the websites are accessible via HTTP
or HTTPS and if it has a valid TLS certificate. Certain websites
should be accessible only via HTTPS, while expired certificates
denote a poorly maintained system that poses a security risk. In-
formation on the accessibility of the website and validity of their
certificates are important contextual information and be collected
continuously. Thus, we designed and implemented a component
that performs such checks.

The component uses the data from passive network monitoring
to enumerate the active websites in the network. For each estab-
lished network connection over HTTP(S) observed in the network,
it adds the destination IP address to the list of webservers. Subse-
quently, the component actively checks if the webserver listens on

https://www.cisco.com/c/en/us/products/ios-nx-os-software/network-based-application-recognition-nbar/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/network-based-application-recognition-nbar/index.html

ARES 2021, August 17-20, 2021, Vienna, Austria

ports 80 (HTTP) or 443 (HTTPS). If the server responds on HTTPS,
the provided certificate is validated. Thus, the component provides
a list of all webservers in the network and marks if they use HTTP,
HTTPS, or both, and if they have a valid certificate and when the
certificate will expire.

3.26 CMS Detection Component. This component complements
the active network monitoring via Nmap, which is capable of dis-
covering webservers and identifying their software (e.g., Apache
or IIS) but cannot analyze the web content or web application.
Content Management Systems (CMS) are popular tools to manage
web content and can be found on numerous websites. However,
they are also frequent targets of cyber attacks due to their wide
deployment, numerous vulnerabilities in them and their plugins,
and the fact that they are often out of date and unpatched. There-
fore, it is advantageous to know if there is a CMS operated on the
websites in the network, at what version, and with what plugins.
Fortunately, identification or fingerprinting of a CMS is not a com-
plicated task, and there are many available tools, such as WhatWeb®.
The component retrieves the list of target websites and then runs
WhatWeb to actively scan the web and identify any deployed CMS.
The component then maps CMS names and versions to the CPE
format.

3.2.7 CVE Connector. This component gathers information on vul-
nerabilities in the CVE format!® from several external sources. The
purpose of this component is to put together available information
on vulnerabilities discovered in the network so that the incident han-
dler can be immediately provided with a human-readable descrip-
tion and technical details on each vulnerability with an assigned
CVE identifier. NVD'!, is a de facto standard library of vulnerabil-
ities. The data on vulnerabilities are regularly downloaded from
the Data Feeds on the NIST website. Although NVD information is
sufficient in most cases, several databases are operated by software
vendors that focus on providing more detailed information on par-
ticular vulnerabilities in the vendor’s products. The descriptions are
often much more detailed than in NVD, and they typically contain
timely information on the vulnerability status, including the exact
software version or patch that fixes the vulnerability. The date of
publication of the vulnerability may also differ from NVD. The vul-
nerabilities are indexed by the same CVE identifier, except for cases
where the vulnerability is first published in a vendor’s database.
It is highly advantageous to use such information; the extended
technical descriptions and information on patches’ availability facil-
itate and speed up vulnerability handling. Our system implements
modules that download data from vulnerability databases of Adobe,
Android, Apple, Cisco, Lenovo, Microsoft, Oracle, and RedHat.

3.2.8 Criticality Estimator. This component implements an exper-
imental approach to the automated detection of critical points in
the computer network. The goal of such a task is to identify which
network hosts are critical for the organization. A critical host may
be part of the organization’s critical infrastructure, provider of a
frequently used service, or otherwise important host. It is possible
to annotate hosts in the network manually, but it is laborious, does

“https://github.com/urbanadventurer/WhatWeb
1Ohttps://cve.mitre.org/
https://nvd.nist.gov/

M. Husék et al.

not scale well, and is prone to omissions. Thus, we designed an
automated tool that uses graph theory to identify critical hosts
in the network. The underlying methods are interesting from the
research perspective and shall be published separately in the future.
The network topology forms a graph that is a subgraph of the
complex graph stored in the database. We define critical host in
the network as a host that has a high impact on the flow of infor-
mation in the network. A critical host is represented as a critical
node in the network topology graph. We assume that removing a
critical node would decrease or remove the graph’s connectivity
in terms of graph theory. We apply two graph-theory algorithms
to assess nodes’ features. First, the algorithm to assess the flow of
information through the node is based on the betweenness algo-
rithm implemented in Neo4j. The algorithm computes the shortest
paths between each pair of nodes via breadth-first search. Subse-
quently, each node is weighted by the number of shortest paths
going through that node. Nodes with the highest weight are consid-
ered the most important (critical) for the network. Second, the node
popularity algorithm is based on enumerating the incident edges of
each node. The implementation is based on Neo4;j’s degree central-
ity algorithm; it first selects the set of nodes and then enumerates
all the incoming and outgoing edges of eligible types. Each node
is weighted by the number of incident edges. Nodes with higher
weight are considered popular and, therefore, possibly critical.

3.2.9 RTIR Connector. The history of cybersecurity incidents asso-
ciated with a network entity is highly interesting contextual infor-
mation. Cybersecurity teams typically use incident management
or ticketing system to keep track of currently handled incidents. A
widely known example of such a tool is RTIR'?. In RTIR, there is
a ticket created for each security incident. Each ticket contains a
history of communication between the incident handlers and users
or IT administrators. The RTIR component periodically checks the
status of incidents and updates the records on the entities’ incident
history in the database. Although the incident handler would work
primarily with RTIR, which provides a search engine and all the
details on the incidents, it is still advantageous to keep track of a
brief history of incidents in the database so that it is kept together
with other contextual information and linked with other entities.

3.2.10 Netlist Connector. This connector is a simple network parti-
tioning connector that provides information on network segments
and contacts of local IT administrators. Such tasks fall into asset
management, which is highly organization-specific and hard to
transfer. In the sample implementation, the connector parses a CSV
file that contains a list of network segments with names and respon-
sible contacts attached. The segment may correspond to IP address
ranges assigned to particular departments, special use segments
(e.g., VPN, Wi-Fi), or any other network’s administrative segmenta-
tion. Potential users of the system are free to implement their own
component or connect it to their asset management system.

4 EVALUATION IN LIVE ENVIRONMENT

The system was deployed in a live environment for evaluation.
Herein, we first briefly describe the testing environment. Subse-
quently, we discuss the volume of the collected data in the database

2https://bestpractical.com/rtir

https://cve.mitre.org/
https://nvd.nist.gov/
https://bestpractical.com/rtir

Collection of Contextual Information for Incident Handling

and its performance. Finally, we comment on the crucial issue in
the system, which is the vulnerability assessment quality.

4.1 Testing Environment

The system was deployed in a campus network of Masaryk Uni-
versity in collaboration with the university’s cybersecurity team
CSIRT-MU. The campus network is large, heterogeneous, admin-
istered by multiple local IT teams at ten faculties, two research
institutes, and thirteen other departments. Altogether, the network
serves 30,000 students and 4,000 employees. Each day, around 15,000
IP addresses are active in the university /16 IPv4 address range. The
number of active IP addresses observed during one month rises to
25,000. The network generates around 19,000 network flows per
second, which corresponds to the data flow of 20 Gb/s. The network
is open and publicly addressable by default. However, there are over
500 network segments with their own firewall rules and policies.

The security team operates a network monitoring infrastructure.
Dedicated NetFlow probes are located at all the points that connect
the campus network with the Internet and selected points inside the
network. The NetFlow data are exported to the collectors that were
remotely accessible by our system. The measurement infrastruc-
ture collected NetFlow records extended by HTTP parsers, which
allowed for the monitoring of User-Agents.

Our system’s testing took place on two servers with different
hardware configurations. The first, more powerful server had eight
cores of Intel Xeon CPU E5-2680 v3 2.50GHz and 32 GB of RAM
and served as the master node running the orchestration service,
the database, and several components. The second server, called
the worker, had four Intel Xeon CPU E5-2680 v2 2.80GHz cores
and 16 GB of RAM and fulfilled the role of the observation point
located in a distinct network segment to verify the active scanning
components. The data collection components were set to run every
five minutes due to the typical setting of NetFlow collectors [5] and
the reliance of many of the components on the NetFlow data. Only
the active network monitoring took too long to finish and, thus,
was run every 16 hours.

4.2 Database Content and Performance

The database is a central component of the proposed system, and
its performance is crucial for the whole system. Neo4;j turned out to
be a technologically mature choice with sufficient performance on
the hosting machine. From the performance perspective, the most
important task is the insertion of new data collected by passive
network monitoring components. Every five minutes, thousands of
nodes and their incident edges are added or updated. The system
was under development for more than one year without deleting
older entries. Over time, we figured out that if the database contains
the data from the past three months (2-3 GB for the particular
network), there are no performance issues. Larger volumes of data
cause delays and reduce the quality of the service. Thus, we added a
cleanup component to the orchestration service that deletes records
older than three months.

It is worth mentioning that the evaluation used the Community
edition of Neo4;j on a single host. We also conducted an experiment
in which we used the Enterprise edition of Neo4j, which turned out
to be more powerful in terms of indexing capabilities and memory

ARES 2021, August 17-20, 2021, Vienna, Austria

management. There were no performance differences in inserting
small amounts of data (tens to hundreds of nodes or edges) or
querying the data regardless of query complexity and result size.
However, it took the Community edition 70 % more time to insert
the data from the passive network monitoring component and 110 %
more time to insert data from OS fingerprinting component; both
components add or update up to 29,000 nodes and tens of thousands
of edges every five minutes. Further, the Community edition often
crashed on low memory when more than three months of data
were stored in the database. Running the database in a cluster of
multiple hosts did not provide any acceleration.

Our measurement shows that three months of data collected
in the last quarter of 2020 consist of 697,783 nodes and 22,119,299
edges, and the overall size of the database is 2.5 GB. Out of this num-
ber, we collected information on 29,535 unique IP addresses from
the /16 range of the network that hosted 76,763 network services.
We also observed 483,449 security events, including the discovery
of 2,404 vulnerabilities mapped to 563 unique CPE identifiers.

4.3 Vulnerability Assessment

Vulnerability assessment based on the methods implemented in the
system was described in our previous work [15]. Herein, we would
like to pinpoint the major differences between the vulnerability
assessment conducted by different components and combinations
of their outputs. Passive or active network monitoring components
provide the CPE strings describing the software identified on the
network hosts. The CPE strings are matched with the CPE strings
attached to CVE records. If a match is found, the host is declared
as potentially vulnerable.

Our measurements confirm the results of related work, namely
that there are major differences in coverage and reliability of the
data and vulnerability types. While passive network monitoring
can detect and identify almost all the running hosts in the network
throughout the measurement period, the vulnerability mapping
is imprecise and with fewer details. In most cases, such methods
correctly estimate the operating system of a host but not its ver-
sion. Thus, only generic vulnerabilities of OS are assigned to the
host. For example, passive network monitoring identified 18,749
actively communicating IP addresses (they sent at least one UDP
or TCP SYN packet), out of which 18,018 could be fingerprinted to
detect its OS. In 10,039 cases, vendor, product, and version were
identified, while in 7,813 cases, only the vendor and product were
identified. However, the CPE strings like cpe:/o:linux:linux_kernel:*
or cpe:/o:microsoft:windows_10:* are not descriptive enough to allow
meaningful correlation with CPE strings in CVE records. Further,
it was shown in our previous work [13] that the precision of OS
fingerprinting is only around 85 %, which should be considered
when interpreting the results.

On the contrary, active network monitoring better identifies
the OS and software behind the host’s network services, including
their versions. However, the scanned hosts need to be running
and accessible over the network, e.g., not behind a firewall or in
a private network segment. Thus, only a fraction of hosts in the
network is scanned. For example, the scanning with Nmap version
6.47 and -sV -n -T5 parameters took over 16 hours to discover 5,771
running hosts, out of which 3,152 were observed to have all ports

ARES 2021, August 17-20, 2021, Vienna, Austria

closed or filtered. Thus, only 1,620 hosts could be assigned a CPE
string with the vendor, product, and version, and additional 252
hosts could be assigned a CPE with only vendor and product. As
we can see, the numbers are significantly lower than with passive
monitoring. A similar approach was also tested with the WhatWeb
scanner (version 0.4.9) that discovered 382 websites hosted in the
network and generated 304 CPE strings describing vendor, product,
and version and 56 CPE strings describing only vendor and product
of a CMS or similar software. Although such numbers appear too
low, the tool’s coverage is excellent and sufficient for vulnerability
assessment of web applications.

Dedicated vulnerability scanners were not used in the evalua-
tion. Although popular tools exist, they could not be easily used
in large-scale networks due to the long time they would need to
scan the network or their pricing, which makes them too expensive
for experiments. Nevertheless, we expect them to provide higher
precision and level of detail than generic active scans, but at most
the same number of outputs.

The third-party tools and services, such as Shodan'? or Shad-
owserver!4, have even lower visibility into the network. There is a
varying level of data quality among such services, and the informa-
tion might be outdated, but the major problem is the low number
of entries. In our experience, tens of vulnerable hosts, at most, can
be discovered per month using such services. Nevertheless, vulner-
able hosts accessible from the Internet may pose a more prominent
threat than an unconfirmed vulnerability on a host in a private
network, and, thus, using such tools should be encouraged.

5 CONCLUSIONS

In this paper, we presented a design and implementation of a sys-
tem that facilitates CSA for incident handlers of a CSIRT/CERT or
SOC. The system continuously collects contextual information on
the computer network, namely the enumeration of hosts, services,
dependencies, and vulnerabilities. Such information enables the
incident handlers to resolve incidents quickly, speed up decision-
making, and prevent mistakes caused by low situational awareness.
The system effectively combines the data from existing network
monitoring infrastructure, tools, and local knowledge to collect the
essential information on the whole network.

In our future work, we will elaborate more on the procedural
aspects of incident handling in relation to CSA. We are going to
formally integrate the system into incident handling procedures
and establish metrics to qualify and quantify the influence of the
proposed system on incident handling practice.

ACKNOWLEDGMENTS

This research was supported by ERDF “CyberSecurity, CyberCrime
and Critical Information Infrastructures Center of Excellence” (No.
CZ.02.1.01/0.0/0.0/16_019/0000822).

REFERENCES

[1] Robin Berthier, Michel Cukier, Matti Hiltunen, Dave Kormann, Gregg Vesonder,
and Dan Sheleheda. 2010. Nfsight: NetFlow-based Network Awareness Tool. In
Proceedings of LISA’10: 24th Large Installation System Administration Conference.
119-134.

Bhttps://www.shodan.io/
4https://www.shadowserver.org/

[2

3

[10

[11

(12]

[13

[14

[15

=
&

[17

[18

[19

[20

[21

[22]

[23

[24

M. Husék et al.

Paul Cichonski, Tom Millar, Tim Grance, and Karen Scarfone. 2012. Computer
Security Incident Handling Guide: Recommendations of the National Institute of
Standards and Technology. NIST Special Publication 800, 61 (2012), 1-147.

Mica R. Endsley. 1995. Toward a Theory of Situation Awareness in Dynamic
Systems. Human Factors 37, 1 (1995), 32-64.

Antti Evesti, Teemu Kanstrén, Tapio Frantti, Teemu Kanstren, and Tapio Frantti.
2017. Cybersecurity Situational Awareness Taxonomy. In 2017 International
Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber
SA). IEEE.

Rick Hofstede, Pavel Celeda, Brian Trammell, Idilio Drago, Ramin Sadre, Anna
Sperotto, and Aiko Pras. 2014. Flow Monitoring Explained: From Packet Capture
to Data Analysis with NetFlow and IPFIX. IEEE Communications Surveys &
Tutorials 16, 4 (2014), 2037-2064.

Martin Husak, Tomas Jirsik, and Shanchieh Jay Yang. 2020. SoK: Contemporary
Issues and Challenges to Enable Cyber Situational Awareness for Network Secu-
rity. In Proceedings of the 15th International Conference on Availability, Reliability
and Security (Virtual Event, Ireland). ACM, Article 2, 10 pages.

Sushil Jajodia, Peng Liu, Vipin Swarup, and Cliff Wang. 2010. Cyber situational
awareness. Vol. 14. Springer.

S. Jajodia, S. Noel, P. Kalapa, M. Albanese, and J. Williams. 2011. Cauldron
Mission-centric Cyber Situational Awareness with Defense in Depth. In 2011 -
MILCOM 2011 Military Communications Conference. 1339-1344.

Jana Komarkova, Martin Husék, Martin Lastovicka, and Daniel Tovarnak. 2018.
CRUSOE: Data Model for Cyber Situational Awareness. In Proceedings of the 13th
International Conference on Availability, Reliability and Security. ACM, Article 36,
10 pages.

Alexander Kott, Norbou Buchler, and Kristin E. Schaefer. 2014. Cyber Defense
and Situational Awareness. Vol. 62. Springer. 29-45 pages.

Patrick Kral. 2012. The Incident Handler’s Handbook. https://www.sans.org/
reading-room/whitepapers/incident/incident-handlers-handbook-33901.

Kiran Lakkaraju, William Yurcik, and Adam J. Lee. 2004. NVisionIP: Netflow
Visualizations of System State for Security Situational Awareness. In Proceedings
of the 2004 ACM Workshop on Visualization and Data Mining for Computer Security
(Washington DC, USA). ACM, 65-72.

Martin Lastovicka, Tomas Jirsik, Pavel Celeda, Stanislav Spacek, and Daniel
Filakovsky. 2018. Passive OS fingerprinting methods in the jungle of wireless
networks. In 2018 IEEE/IFIP Network Operations and Management Symposium.
Martin Lastovicka, Antonin Dufka, and Jana Komarkova. 2018. Machine Learn-
ing Fingerprinting Methods in Cyber Security Domain: Which one to Use?. In
2018 14th International Wireless Communications Mobile Computing Conference
(IWCMC). 542-547.

Martin Lastovicka, Martin Husak, and Lukas Sadlek. 2020. Network Monitoring
and Enumerating Vulnerabilities in Large Heterogeneous Networks. In 2020
IEEE/IFIP Network Operations and Management Symposium.

Martin Lastovicka, Stanislav Spacek, Petr Velan, and Pavel Celeda. 2020. Using
TLS Fingerprints for OS Identification in Encrypted Traffic. In 2020 IEEE/IFIP
Network Operations and Management Symposium.

Xiaowu Liu, Huiqiang Wang, Jibao Lai, and Ying Liang. 2007. Network security
situation awareness model based on heterogeneous multi-sensor data fusion. In
2007 22nd international symposium on computer and information sciences.
Gordon Fyodor Lyon. 2008. Nmap network scanning: The official Nmap project
guide to network discovery and security scanning. Insecure. Com LLC (US).
Miroslaw Maj, Roeland Reijers, and Don Stikvoort. 2010. Good Practice Guide for
Incident Management. https://www.enisa.europa.eu/publications/good-practice-
guide-for-incident-management.

Tamsin Moye, Reginald Sawilla, Rodney Sullivan, and Philippe Lagadec. 2015. Cy-
ber Defence Situational Awareness Demonstration/Request for Information (RFI)
from Industry and Government (CO-14068-MNCD2). NCI Agency Acquisition
(2015).

S. Noel, E. Harley, K. H. Tam, M. Limiero, and M. Share. 2016. CyGraph: Graph-
Based Analytics and Visualization for Cybersecurity. Handbook of Statistics 35
(2016), 117-167.

Muhammad Fahad Umer, Muhammad Sher, and Yaxin Bi. 2017. Flow-based
intrusion detection: Techniques and challenges. Computers & Security 70 (2017),
238-254.

Xiaoxin Yin, William Yurcik, Michael Treaster, Yifan Li, and Kiran Lakkaraju.
2004. VisFlowConnect: Netflow Visualizations of Link Relationships for Security
Situational Awareness. In Proceedings of the 2004 ACM Workshop on Visualization
and Data Mining for Computer Security (Washington DC, USA). ACM, 26-34.
Robert Zager and John Zager. 2017. OODA loops in cyberspace: A new cyber-
defense model. Small Wars Journal 20, 11 (21 October 2017).

https://www.shodan.io/
https://www.shadowserver.org/
https://www.sans.org/reading-room/whitepapers/incident/incident-handlers-handbook-33901
https://www.sans.org/reading-room/whitepapers/incident/incident-handlers-handbook-33901
https://www.enisa.europa.eu/publications/good-practice-guide-for-incident-management
https://www.enisa.europa.eu/publications/good-practice-guide-for-incident-management

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Cyber Situational Awareness
	2.2 Cybersecurity Incident Handling
	2.3 Active and Passive Network Monitoring

	3 System Design and Implementation
	3.1 Design and Common Components
	3.2 Data Collection Components

	4 Evaluation in Live Environment
	4.1 Testing Environment
	4.2 Database Content and Performance
	4.3 Vulnerability Assessment

	5 Conclusions
	Acknowledgments
	References

