D 2021

A formula for disaster: a unified approach to elliptic curve special-point-based attacks

SEDLÁČEK, Vladimír, Jesús-Javier CHI-DOMINGUEZ, Ján JANČÁR and Billy Bob BRUMLEY

Basic information

Original name

A formula for disaster: a unified approach to elliptic curve special-point-based attacks

Authors

SEDLÁČEK, Vladimír (203 Czech Republic, guarantor, belonging to the institution), Jesús-Javier CHI-DOMINGUEZ, Ján JANČÁR (703 Slovakia, belonging to the institution) and Billy Bob BRUMLEY

Edition

Cham, Advances in Cryptology – ASIACRYPT 2021, p. 130-159, 30 pp. 2021

Publisher

Springer

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10200 1.2 Computer and information sciences

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

electronic version available online

Impact factor

Impact factor: 0.402 in 2005

RIV identification code

RIV/00216224:14330/21:00119154

Organization unit

Faculty of Informatics

ISBN

978-3-030-92061-6

ISSN

UT WoS

000926634200005

Keywords in English

elliptic curve cryptography; ECDH; side-channel analysis; RPA; ZVP; EPA; exceptional points

Tags

International impact, Reviewed
Změněno: 16/8/2023 13:22, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

The Refined Power Analysis, Zero-Value Point, and Exceptional Procedure attacks introduced side-channel attack techniques against specific cases of elliptic curve cryptography. The three attacks recover bits of a static ECDH key adaptively, collecting information on whether a certain multiple of the input point was computed. We unify and generalize these attacks in a common framework and solve the corresponding problem for a broader class of inputs. We also introduce a version of the attack against windowed scalar multiplication methods, recovering the full scalar instead of just a part of it. Finally, we systematically analyze elliptic curve point addition formulas from the Explicit-Formulas Database, classify all non-trivial exceptional points, and find them in new formulas. These results indicate the usefulness of our tooling for unrolling formulas and finding special points, which might be of independent research interest.

Links

GA20-03426S, research and development project
Name: Ověření a zlepšení bezpečnosti kryptografie eliptických křivek
Investor: Czech Science Foundation
MUNI/A/1549/2020, interní kód MU
Name: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity 21 (Acronym: SKOMU)
Investor: Masaryk University