
Deciding Polynomial Termination Complexity for 
VASS Programs 
Michal Ajdarów -fir 
Masaryk University, Brno, Czech Republic 

Antonín Kučera B-ífr 
Masaryk University, Brno, Czech Republic 

Abstract 

We show that for every fixed degree k > 3, the problem whether the termination/counter complexity 
of a given demonic VASS is 0(nk), Q(nk), and 0(n f e) is coNP-complete, NP-complete, and 
DP-complete, respectively. We also classify the complexity of these problems for k < 2. This shows 
that the polynomial-time algorithm designed for strongly connected demonic VASS in previous works 
cannot be extended to the general case. Then, we prove that the same problems for VASS games 
are PSPACE-complete. Again, we classify the complexity also for k < 2. Tractable subclasses of 
demonic VASS and VASS games are obtained by bounding certain structural parameters, which 
opens the way to applications in program analysis despite the presented lower complexity bounds. 
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1 Introduction 

Vector addition systems with states (VASS) are a generic formalism expressively equivalent 
to Petri nets. In program analysis, V A S S are used to model programs with unbounded 
integer variables, parameterized systems, etc. Thus, various problems about such systems 
reduce to the corresponding questions about V A S S . This approach's main bottleneck is 
that interesting questions about V A S S tend to have high computational complexity (see, 
e.g., [8, 15, 16]). Surprisingly, recent results (see below) have revealed computational 
tractability of problems related to asymptotic complexity of VASS computations, allowing to 
answer questions like "Does the program terminate in time polynomial in n for all inputs 
of size n?", or "Is the maximal value of a given variable bounded by (9(n 4) for all inputs 
of size n?". These results are encouraging and may enhance the existing software tools 
for asymptotic program analysis such as S P E E D [11], C O S T A [2], R A M L [12], Rank [3], 
Loopus [18, 19], A P r o V E [10], CoFloCo [9], C4B [7], and others. In this paper, we give a full 
classification of the computational complexity of deciding polynomial termination/counter 
complexity for demonic VASS and V A S S games, and solve open problems formulated in 
previous works. Furthermore, we identify structural parameters making the asymptotic VASS 
analysis computationally hard. Since these parameters are often small in VASS program 
abstractions, this opens the way to applications in program analysis despite the established 
lower complexity bounds. 

The termination complexity of a given VASS A is a function £ : N —> Noo assigning to 
every n the maximal length of a computation initiated in a configuration with all counters 
initialized to n. Similarly, the counter complexity of a given counter c in A is a function 
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input i ; 
while ( i >0) 

i : = i -1 ; 
j :=i ; 
while(j >0) 

i : i I: 

input i ; 
while ( i >0) 

i ; 
j:=0; Aux:=0; 
while ( i >0) 

i ; 
j++; 
Aux++; 

while (Aux>0) 

Aux ; 
while (j >0) 

j — ; 

(0,0,0) 

(-1,0,0) / * i - * / 

(0, - 1 , - 1 ) / / j:=0; A<ix:=0 / / 

(0,0,0) 

(-1,+1,+1) // i — ; j++; Aux++ / / 

(0,0,0) 

(+1,0, -1 ) // i++; Aux— / / 

(0,0,0) 

(0,-1,0) Hi- 11 

Figure 1 A skeleton of a simple imperative program (left) and its VASS model (right). 

C[c] : N —> Noo such that C[c](n) is the maximal value of c along a computation initiated in 
a configuration with all counters set to n. So far, three types of V A S S models have been 
investigated in previous works. 

Demonic VASS, where the non-determinism is resolved by an adversarial environment 
aiming to increase the complexity. 
VASS Games, where every control state is declared as angelic or demonic, and the 
non-determinism is resolved by the controller or by the environment aiming to lower and 
increase the complexity, respectively. 
VASS MDPs, where the states are either non-deterministic or stochastic. The non-
determinism is usually resolved in the "demonic" way. 

Let us note that the "angelic" and "demonic" non-determinism are standard concepts in 
program analysis [6] applicable to arbitrary computational devices including VASS. The use 
of VASS termination/counter complexity analysis is illustrated in the next example. 

• Example 1. Consider the program skeleton of Fig. 1 (left). Since a VASS cannot directly 
model the assignment j :=i and cannot test a counter for zero, the skeleton is first transformed 
into an equivalent program of Fig . 1 (middle), where the assignment j :=i is implemented 
using an auxiliary variable Aux and two whi le loops. Clearly, the execution of the transformed 
program is only longer than the execution of the original skeleton (for all inputs). For the 
transformed program, an over-approximating demonic VASS model is obtained by replacing 
conditionals with non-determinism, see Fig. 1 (right). When all counters are initialized to n, 
the VASS terminates after C ( n 2 ) transitions. Hence, the same upper bound is valid also for 
the original program skeleton. Actually, the run-time complexity of the skeleton is 0 ( n 2 ) 
where n is the initial value of i , so the obtained upper bound is asymptotically optimal. 

Existing results. In [5], it is shown that the problem whether £ € 0(n) for a given demonic 
VASS is solvable in polynomial time, and a complete proof method based on linear ranking 
functions is designed. The polynomiality of termination complexity for a given demonic VASS 
is also decidable in polynomial time, and if £ ^ 0(nk) for any k € N , then £ S 2 n(") [14]. 
The same results hold for counter complexity. In [20], a polynomial time algorithm computing 
the least k e N such that £ e 0(nk) for a given demonic VASS is presented (the algorithm 
first checks if such a k exists). It is also shown that if £ £ 0(nk), then £ e fi(nfe+1). 
Again, the same results hold also for counter complexity. The proof is actually given only for 
strongly connected demonic VASS, and it is conjectured that a generalization to unrestricted 
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demonic VASS can be obtained by extending the presented construction (see the Introduction 
of [20]). In [13], it was shown that the problem whether the termination/counter complexity 
of a given demonic V A S S belongs to a given level of Grzegorczyk hierarchy is solvable in 
polynomial time, and the same problem for VASS games is shown NP-complete. The N P 
upper bound follows by observing that player Angel can safely commit to a countreless1 

strategy when minimizing the complexity level in the Grzegorczyk hierarchy. Intuitively, 
this is because Grzegorczyk classes are closed under function composition (unlike the classes 
0(n f e)). Furthermore, the problem whether £ € C(n 2 ) for a given VASS game is shown 
P S P A C E hard, but the decidability of this problem is left open. As for VASS M D P s , the 
only existing result is [4], where it is shown that the linearity of termination complexity is 
solvable in polynomial time for VASS M D P s with a tree-like M E C decomposition. 

Our contribution. For demonic VASS, we refute the conjecture of [20] and prove that for 
general (not necessarily strongly connected) demonic VASS, the problem whether 

£ € 0(nk) is in P for k = 1, and coNP-complete for k > 2; 
£ <G f2(nfe) is in P for k < 2, and NP-complete for k > 3; 
£ <G 0(n f e) is in P for k = 1, coNP-complete for k = 2, and DP-complete for k > 3. 

The same results are proven also for counter complexity. 
Since the demonic VASS constructed in our proofs are relatively complicated, we write 

them in a simple imperative language with a precisely defined VASS semantics. This allows 
to present the overall proof idea clearly and justify technical correctness by following the 
control flow of the VASS program, examining possible side effects of the underlying "gadgets", 
and verifying that the Demon does not gain anything by deviating from the ideal execution 
scenario. 

When proving the upper bounds, we show that every path in the D A G of strongly 
connected components can be associated with the (unique) vector describing the maximal 
simultaneous increase of the counters. Here, the counters pumpable to exponential (or 
even larger) values require special treatment. We show that this vector is computable in 
polynomial time. Hence, the complexity of a given counter c is fi(n f e) iff there is a path in the 
D A G such that the associated maximal increase of c is il(nk). Thus, we obtain the N P upper 
bound, and the other upper bounds follow similarly. The crucial parameter characterizing 
hard-to-analyze instances is the number of different paths from a root to a leaf in the D A G 
decomposition, and tractable subclasses of demonic V A S S are obtained by bounding this 
parameter. We refer to Section 3 for more details. 

Then, we turn our attention to VASS games, where the problem of polynomial termina
tion/counter complexity analysis requires completely new ideas. In [13], it was observed that 
the information about the "asymptotic counter increase performed so far" must be taken into 
account by player Angel when minimizing the complexity level in the polynomial hierarchy, 
and counterless strategies are therefore insufficient. However, it is not clear what information 
is needed to make optimal decisions, and whether this information is finitely representable. 
We show that player Angel can safely commit to a so-called locking strategy. A strategy 
for player Angel is locking if whenever a new angelic state p is visited, one of its outgoing 
transition is chosen and "locked" so that when p is revisited, the same locked transition 
is used. The locked transition choice may depend on the computational history and the 
transitions locked in previously visited angelic states. Then, we define a locking decomposition 

A strategy is counterless if the decision depends just on the control state of the configuration currently 
visited. 

C O N C U R 2021 
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1 input i ; 
2 j : = 0; k: = 0; z: = 0; 
3 i f condi t ion / / demonic choice / / 
4 then while (i>0) do j++; k: = k+i ; i ; done 
5 else j := i * i ; k:= i ; 
6 while (i>0) do j : = j+k; i ; done 
7 choose: / / angelic choice / / 
8 while (j>0) do j ; z++ done 
9 or: while (k>0) do k ; z++ done 

Figure 2 A simple program with both demonic and angelic non-determinism. 

of a given V A S S that plays a role similar to the D A G decomposition for demonic V A S S . 
Using the locking decomposition, the existence of a suitable locking strategy for player Angel 
is decided by an alternating polynomial time algorithm (and hence in polynomial space). 
Thus, we obtain the following: For every VASS game, we have that C is either in 0(nk) or 
in fi(nfe+1). Furthermore, the problem whether 

C G 0{nk) is NP-complete for k=l and PSPACE-complete for k>2: 
C G fl(nk) is in P for k=l, coNP-complete for k=2, and PSPACE-complete for fc>3; 

- £ G 6(n f e ) is NP-complete for k=l and PSPACE-complete for k>2. 

The same results hold also for counter complexity. Similarly to demonic V A S S , tractable 
subclasses of VASS games are obtained by bounding the number of different paths in the 
locking decomposition. 

The VASS model constructed in Example 1 is purely demonic. The use of VASS games 
in program analysis/synthesis is illustrated in the next example. 

• Example 2. Consider the program of Fig. 2. The c o n d i t i o n at line 3 is resolved by the 
environment in a demonic way. The two branches of i f - t h e n - e l s e execute a code modifying 
the variables j and k. After that, the controller can choose one of the two while-loops at 
lines 8, 9 with the aim of keeping the value of z small. The question is how the size of z 
grows with the size of input if the controller makes optimal decisions. A closer look reveals 
that when the variable i is assigned n at line 1, then 

the values of j and k are 0(n) and 0 ( n 2 ) when the c o n d i t i o n is evaluated to true: 
H the values of j and k are 0 ( n 2 ) and 0(n) when the c o n d i t i o n is evaluated to false. 

Hence, the controller can keep z in O(n) if an optimal decision is taken. Constructing a 
VASS game model for the program of F ig . 2 is straightforward (the required gadgets are 
given in Fig . 3). Using the results of this paper, the above analysis can be performed fully 
automatically. 

2 Preliminaries 

The sets of integers and non-negative integers are denoted by Z and N , respectively, and we 
use Noo to denote N U {oo}. The vectors of Zd where d > 1 are denoted by v, u , . . . , and the 
vector ( n , . . . , n) is denoted by n. 

• Definition 3 ( V A S S ) . Let d > 1. A ci-dimensional vector addition system with states 
(VASS) is a pair A = (Q, Tran), where Q ^ 0 is a finite set of states and Tran C Q x Zd x Q 
is a finite set of transitions such that for every q G Q there exist p G Q and u G Zd such 
that (q,u,p) G Tran. 
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The set Q is split into two disjoint subsets QA and QD of angelic and demonic states 
controlled by the players Angel and Demon, respectively. A configuration of A is a pair 
pv <G Q x N d , where v is the vector of counter values. We often refer to counters by their 
symbolic names. For example, when we say that A has three counters x, y, z and the value of 
a; in a configuration pv is 8, we mean that d = 3 and v, = 8 where i is the index associated 
to x. When the mapping between a counter name and its index is essential, we use c, to 
denote the counter with index i. 

A finite path in A of length m is a finite sequence g = pi, U\,p2, U2,... ,pm such that 
(pi,Ui,pi+i) € T r a n for all 1 < i < m. We use A(g) to denote the effect of p, defined as 
Y^lLi ui- A n infinite path in „4 is an infinite sequence a = pi, U\,p2, U2,... such that every 
finite prefix p i , u i , . . . ,pm of a is a finite path in A. 

A computation of A is a sequence of configurations a = piVi,p2V2,... of length m <G N Q C 
such that for every 1 < i < m there is a transition (pi, Ui,pi+i) satisfying v^ +i = + u^. 
Note that every computation determines its associated path in the natural way. 

VASS Termination Complexity. A strategy for Angel (or Demon) in A is a function r\ 
assigning to every finite computation p i v i , . . . , p m v m where pm € QA (or pm <G QD) a 
transition (pm,u,q). Every pair of strategies (a, TT) for Angel/Demon and every initial 
configuration pv determine the unique maximal computation C'omp'7'7' (pv) initiated in 
pv. The maximality means that the computation cannot be prolonged without making 
some counter negative. For a given counter c, we use max[c](Compa'7r(pv)) to denote the 
supremum of the c's values in all configurations visited along Compa,v (pv). Furthermore, we 
use len{ComprJ,7r(pv)) to denote the length of Compa'v(pv). Note that raair[c] and len can 
be infinite for certain computations. 

For every initial configuration pv, consider a game where the players Angel and Demon 
aim at minimizing and maximizing the moa;[c] or len objective, respectively. B y applying 
standard game-theoretic arguments (see [1] for an explicit proof), we obtain 

sup inf len(Compa'7r(pv)) = inf sup len(Compa'7r(pv)) (1) 

sup inf max[c](Compa'7r(pv)) = inf sup max[c](Compa'7r(pv)) (2) 

where a and TT range over all strategies for Angel and Demon, respectively. Hence, there 
exists a unique termination value of pv, denoted by Tval(pv), defined by (1). Similarly, for 
every counter c there exists a unique maximal counter value, denoted by Cval[c](pv), defined 
by (2). Furthermore, both players have optimal positional strategies a* and ir* achieving 
the outcome specified by the equilibrium value or better in every configuration pv against 
every strategy of the opponent (here, a positional strategy is a strategy depending only on 
the currently visited configuration). We refer to [1] for details. 

The termination complexity and c-counter complexity of A are functions £,C[c] : N —> Noc 
where £(n) = vaax{Tval(pn) \ p € Q} and C[c](n) = max{Cval[c](pn) | p € Q}- When the 
underlying VASS A is not clear, we write LA and CA [C] instead of £ and C [c]. 

Observe that the asymptotic analysis of termination complexity for a given VASS A is 
trivially reducible to the asymptotic analysis of counter complexity in a VASS B obtained 
from A by adding a fresh "step counter" sc incremented by every transition of B. Clearly, 
CA € 0(Cg[sc]). Therefore, the lower complexity bounds for the considered problems of 
asymptotic analysis are proven for C, while the upper bounds are proven for C[c]. 

C O N C U R 2021 



30:6 Polynomial V A S S Termination 

I VASS Program 1 AV. 

1 <fe+=di*ei; d3+=d2*e2; ••• ; dk += d/b-i * e.k-\\ 
2 for each i = 1,..., v do 
3 | choose: Xi+=dk or Xi+=dk] 
4 end 
5 so+=dk; 
6 for each i = 1,..., m do 
7 | choose: si+= min(^|, Si_i) or si+= min(^2i or si+= min(£^, Si_i); 
8 end 
9 /+=sm * n 

3 Demonic VASS 

In this section, we classify the computational complexity of polynomial asymptotic analysis 
for demonic V A S S . The following theorem holds regardless whether the counter update 
vectors are encoded in unary or binary (the lower bounds hold for unary encoding, the upper 
bounds hold for binary encoding). 

• Theorem 4. Let k > 1. For every demonic VASS A we have that £ is either in 0(nk) or 
in Q(nk+1). Furthermore, the problem whether 

£ € 0(nk) is in P for k = 1, and coNP-complete for k > 2; 
£ <G f2(nfe) is in P for k < 2, and NP'-complete for k > 3; 

H £ £ Q(nk) is in P for k = 1, coNP-complete for k = 2, and DP'-complete for k > 3. 
The same results hold also for C[c] (for a given counter c of A). 

The next theorem identifies the crucial parameter influencing the complexity of polynomial 
asymptotic analysis for demonic VASS. Let T>(A) be the standard D A G of strongly connected 
components of A. For every leaf (bottom SCC) r] of T>(A), let Deg(rf) be the total number 
of all paths from a root of T>(A) to rj. 

• Theorem 5. Let A be a class of demonic VASS such that for every A € A and every leaf 
r) ofD(A) we have that Deg{rj) is bounded by a fixed constant depending only on A . 

Then, the problems whether £^ € 0(nk), £^ € Vt{nk), £^ € 0(n f e) for given A <G A and 
k <G N , are solvable in polynomial time (where the k is written in binary). The same results 
hold also for C[c] (for a given counter c of A). 

The degree of the polynomial bounding the running time of the decision algorithm for 
the three problems of Theorem 5 increases with the increasing size of the constant bounding 
Deg{rf). From the point of view of program analysis, Theorem 5 has a clear intuitive meaning. 
If A is an abstraction of a program V, then the instructions in V increasing the complexity 
of the asymptotic analysis of A are branching instructions such as if-then-else that are 
not embedded within loops. If V executes many such constructs in a sequence, a termination 
point can be reached in many ways ("zigzags" in the P ' s control-flow graph). This increases 
Deg{rf), where 77 is a leaf of T)(A) containing the control state modeling the termination point 
of P . 

3.1 Lower bounds 

Since the asymptotic analysis of £ is trivially reducible to the asymptotic analysis of C [c] 
(see Section 2), all lower complexity bounds of Theorem 4 follow directly from the next two 
lemmata. 
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• Lemma 6. Let k>2. For every propositional formula ip in 3-CNF there exists a demonic 
VASS AV constructible in time polynomial in \ip\ such that 

if if is satisfiable, then € 0 ( n f e + 1 ) ; 
— if ip is not satisfiable, then JCA g 0 (n f e ) . 

Proof. Let ip = C\ A • • • A Cm be a propositional formula where every d = £\ V t\ V tz is a 
clause with three literals over propositional variables X\,..., Xv (a literal is a propositional 
variable or its negation). We construct a VASS AV with the counters 

x\, • • • , xv, xi, • • • ,xv used to encode an assignment of truth values to X\,..., Xv. In the 
following, we identify literals of ip with their corresponding counters (i.e., if = Xu, 
the corresponding counter is xu; and if = ->XU, the corresponding counter is xu). 
so,... ,sm used to encode the validity of clauses under the chosen assignment, 

H / used to encode the (in)validity of ip under the chosen assignment, 
d\,..., dk and e\,..., ek-i used to compute n , 
and some auxiliary counters used in gadgets. 

The structure of A.V is shown in VASS Program 1. The basic instructions are implemented 
by the gadgets of Fig. 3 (top). Counter changes associated to a given transition are indicated 
by the corresponding labels, where —c and +c mean decrementing and incrementing a given 
counter by one (the other counters are unchanged). Hence, the empty label represents no 
counter change, i.e., the associated counter update vector is 0. The auxiliary counter a is 
unique for every instance of these gadgets and it is not modified anywhere else. 

The constructs ins\; insi and choose: ins\; or • • • or insj are implemented by connect
ing the underlying gadgets as shown in Fig . 3 (bottom). The foreach statements are just 
concise representations of the corresponding sequences of instructions connected by 

Now suppose that the computation of VASS Program 1 is executed from line 1 where all 
counters are initialized to n. One can easily verify that all gadgets implement the operations 
associated to their labels up to some "asymptotically irrelevant side effects". More precisely, 

the z += x * y gadget ensures that the Demon can increase the value of counter z by 
val{x) + val{y) • {val{x) + n) (but not more) if he plays optimally, where val{x) and val{y) 
are the values stored in x and y when initiating the gadget. Recall that the counter a is 
unique for the gadget, and its initial value is n. Also note that the value of y is decreased 
to 0 when the Demon strives to maximally increase the value of z. 

C O N C U R 2021 
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The x+=y gadget ensures that the Demon can add val(y) to the counter x and then reset 
y to the value val{y) + n (but not more) if he plays optimally. Again, note that a is a 
unique counter for the gadget with initial value n. 
The Si += min(£, Sj_i) gadget allows the Demon to increase s, by the minimum of val(£) 
and val(si-i), and then restore £ to val{€) + n (but not more). 

Now, the VASS Program 1 is easy to follow. We describe its execution under the assumption 
that the Demon plays optimally. It is easy to verify that the Demon cannot gain anything 
by deviating from the below described scenario where certain counters are pumped to their 
maximal values (in particular, the auxiliary counters are never re-used outside their gadgets, 
hence the Demon is not motivated to leave any positive values in them). 

By executing line 1, the Demon pumps the counter alk to the value 0(n f e ) . Then, the 
Demon determines a truth assignment for every Xi, where i € {1,... ,v}, by pumping either 
the counter Xi or the counter Xi to the value 0(n f e ) . A key observation is that when the 
chosen assignment makes ip true, then every clause contains a literal such that the value of 
its associated counter is 6(n f e ) . Otherwise, there is a clause C; such that all of the three 
counters corresponding to £\, 3̂ have the value n. The Demon continues by pumping so 
to the value 0(nk) at line 5. Then, for every i = 1,. . . , m, he selects a literal of C; and 
pumps Si to the minimum of val{si-\) and val(llj). Observe that val(si-i) is either O(n) or 
0(n f e ) , and the same holds for val(si) after executing the instruction. Hence, sm is pumped 
either to 0(n f e ) or O(n), depending on whether the chosen assignment sets every clause to 
true or not, respectively. Note that the length of the whole computation up to line 9 is 
0(n f e ) , regardless whether the chosen assignment sets the formula ip to true or false. If sm 

was pumped to 0(n f e ) , then the last instruction at line 9 can pump the counter / to 0 ( n f e + 1 ) 
in 0 ( n f e + 1 ) transitions. Hence, if ip is satisfiable, the Demon can schedule a computation of 
length 0 ( n f e + 1 ) . Otherwise, the length of the longest computation is 0(n f e ) . Also observe 
that if the Demon starts executing AV in some other control state (i.e., not in the first 
instruction of line 1), the maximal length of a computation is only shorter. 

Recall that the class D P consists of problems that are intersections of one problem in 
N P and another problem in coNP. The class D P is expected to be somewhat larger than 
N P U coNP, and it is contained in the P N P level of the polynomial hierarchy. The standard 
DP-complete problem is S A T - U N S A T , where an instance is a pair if, tp of propositional 
formulae and the question is whether if is satisfiable and ip is unsatisfiable [17]. Hence, the 
D P lower bounds of Theorem 4 follow directly from the next lemma (a proof can be found 
in [1]). 

• Lemma 7. Let k > 3. For every pair ip,ip of propositional formulae in 3-CNF there exists 
a demonic VASS AV^ such that £^ , € 0(n f e ) iff ip is satisfiable and tp is unsatisfiable. 

3.2 Upper bounds 

The upper complexity bounds of Theorem 4 are proven for C [c]. For the sake of clarity, we 
first sketch the main idea and then continue with developing a formal proof. 

Intuition. For a given demonic VASS A, we compute its S C C decomposition and proceed 
by analyzing the individual SCCs in the way indicated in Fig. 4. We start in a top SCC with 
all counters initialized to n. Here, we can directly apply the results of [20, 14] and decide in 
polynomial time whether C[c] € 0(n f e ) for some k € N or C[c] £ (in the first case, we 
can also determine the k). We perform this analysis for every counter c and thus obtain the 
vector describing the maximal asymptotic growth of the counters (such as (n 2 , n , 2N^) in 
Fig. 4). Observe that 



M . Ajdarow and A . Kucera 30:9 

(n, n, n) 

z X 
(n 2 , n, oo) (n 2 , n, oo) 

(n 5 , n, oo) 

X z 
(n 5 , n , oo) (n 2 , 00,00) 

(n 5 ,n 5 ,00) (n 2,oo,oo) 

Figure 4 Analyzing C[c] in a demonic VASS by SCC decomposition. 

although the asymptotic growth of C [c] has been analyzed for each counter independently, 
all counters can be pumped to their associated asymptotic values simultaneously. Intuit
ively, this is achieved by considering the "pumping computations" for the smaller vector 
(\n/d\, • • •, \ n/d\) of initial counter values (d is the dimension of A), and then simply 
"concatenating" these computations in a configuration with all counters initialized to n: 
if the asymptotic growth of C[c] is 0 (n) , the computation simultaneously pumping the 
counters to their asymptotic values may actually decrease the value of c (the computation 
can be arranged so that the resulting value of c stays above [n/d\ for all sufficiently 
large n). For example, the top SCC of Fig. 4 achieves the simultaneous asymptotic growth 
of all counters from (n, n,n) to (n 2 ,n, 2N^), but this does not imply the counters can 
be simultaneously increased above the original value n (nevertheless, the simultaneous 
increase in the first and the third counter above n is certainly possible for all sufficiently 
large n). 

A natural idea how to proceed with next SCCs is to perform a similar analysis for larger 
vectors of initial counter values. Since we are interested just in the asymptotic growth of 
the counters, we can safely set the initial value of a counter previously pumped to 0(n f e ) 
to precisely nk. However, it is not immediately clear how to treat the counters previously 
pumped to 2Q(NK We show that the length of a computation "pumping" the counters to their 
new asymptotic values in the considered S C C C is at most exponential in n. Consequently, 
the "pumping computation" in C can be constructed so that the resulting value of the "large" 
counters stays above one half of their original value. This means the value of "large" counters 
is still in 2^(") after completing the computation in C. Furthermore, the large counters can 
be treated as if their initial value was infinite when analyzing C. This "infinite" initial value 
is implemented simply by modifying every counter update vector u in C so that u[j] = 0 
for every "large" counter Cj. This adjustment in the structure of C is denoted by putting 
"00" into the corresponding component of the initial counter value vector (see Fig. 4). This 
procedure is continued until processing all SCCs. Note that the same SCC may be processed 
multiple times for different vectors of initial counter values corresponding to different paths 
from a top SCC. In Fig. 4, the bottom SCC is processed for the initial vectors ( n 5 , n, 00) and 
(n 2 ,oo,oo) corresponding to the two paths from the top S C C . The number of such initial 
vectors can be exponential in the size of A, as witnessed by the VASS constructed in the 
proof of Lemma 6. 
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Now we give a formal proof. Let A be a demonic VASS with d counters. For every 
counter c and every v S N d , we define the function C[c, v] : N —> Noo where C[c, v](n) is the 
maximum of all Cval[c](pu) where p £ Q and u = (n^ 1 * 1 , . . . ,nv^). 

• Proposition 8. Let A be a strongly connected demonic VASS with d counters, and let 
v <G N d such that v(i) < 2 J ' d for every i < d, where j < \Q\. For every counter c, we have 
that either C[c,v] € @(nk) for some 1 < k < 2^+1>d, orC[c,v] e Q(2n). It is decidable 
in polynomial time which of the two possibilities holds. In the first case, the value of k is 
computable in polynomial time. 

In [20], a special variant of Proposition 8 covering the subcase when v = 1 is proven. In 
the introduction part of [20], it is mentioned that a generalization of this result (equivalent 
to Proposition 8) can be obtained by modifying the techniques presented in [20]. Although 
no explicit proof is given, the modification appears feasible. We give a simple explicit proof 
of Proposition 8, using the algorithm of [20] for the v = 1 subcase as a "black-box procedure". 
We refer to [1] for details. 

Now we extend the function C[c, v] so that v S N ^ . Here, the oo components of v 
correspond to counters that have already been pumped to "very large" values and do not 
constrain the computations in A. As we shall see, "very large" actually means "at least 
singly exponential in n". 

Let v e N^, and let Av be the V A S S obtained from A by modifying every counter 
update vector u into u', where u '(i) = u(i) if v(i) ^ oo, otherwise u'(i) = 0. Hence, the 
counters set to oo in v are never changed in Av. Furthermore, let v ' be the vector obtained 
from v by changing all oo components into 1. We put CA[c, v] = CAv[c, v']. 

For a given v e N^, we say that F : N —> N d is v-consistent if for every i e { 1 , . . . , d} we 
have that the projection Fi : N —> N is either 0(n f e ) if = k, or 2 n ^ if = oo. Intuitively, 
a v-consistent function assigns to every n € N a vector F(n) of initial counter values growing 
consistently with v. 

Given v S N ^ , a control state p € Q, a v-consistent function F, an infinite family 
n = 7 T i , 7 T 2 , . . . of Demon's strategies in A, a function S : N —> N , and n € N , we use 
j3n [v, p, F, n, S] to denote the computation of A starting at pF{n) obtained by applying irn 

until a maximal computation is produced or S(n) transitions are executed. 
The next lemma says that if A is strongly connected, then all counters can be pumped 

simultaneously to the values asymptotically equivalent to [c, v] so that the counters 
previously pumped to exponential values stay exponential. 

• Lemma 9. Let A be a strongly connected demonic VASS with d counters. Let v <G N ^ , 
and let F be a v-consistent function. Then for every counter Ci such that ^ oo and 
C^[ci,v] <G 6(n f e ) we have that Cval[ci](pF(n)) € 0(n f e ) for every p € Q. Furthermore, there 
exist p <G Q, an infinite family U of Demon's strategies, and a function S € 2°^ such that 
for every Ci, the value of Ci in the last configuration of {3„ [v,p, F, H, S] is 

©(n f e ) ifCA[ct,v}ee(nk); 
2n(n) z y v . = oo orCA[Ci,v] e 2 n ("). 

A proof of Lemma 9 uses the result of [14] saying that counters pumpable to exponential 
values can be simultaneously pumped by a computation of exponential length from a 
configuration where all counters are set to n (the same holds for polynomially bounded 
counters, where the length of the computation can be bounded even by a polynomial). Using 
the construction of Proposition 8, these results are extended to our setting with v-consistent 
initial counter values. Then, the initial counter values are virtually "split into d boxes" of 
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size [F(n)/d\. The computations pumping the individual counters are then run "each in its 
own box" for these smaller initial vectors and concatenated. As the computation of one "box" 
cannot affect any other "box", no computation can undo the effects of previous computations. 
The details can be found in [1]. 

Let VA '• —> N ^ , be a function such that, for every v G N ^ , 

Note that every S C C (vertex) 77 of T>{A) can be seen as a strongly connected demonic 
VASS after deleting all transitions leading from/to the states outside 77. If the counters are 
simultaneously pumped to v-consistent values before entering 77, then 77 can further pump 
the counters to V^(v)-consistent values (see Lemma 9). According to Lemma 8, V^(v) is 
computable in polynomial time for every v G where every finite v , is bounded by 2^'d 

for some j < \Q\. 

Observe that all computations of A can be divided into finitely many pairwise disjoint 
classes according to their corresponding paths in P 4 (i.e., the sequence of visited SCCs of T>j\). 
For each such sequence 771,..., rjm, the vectors v o , . . . , v m where vo = 1 and = VVi (v^_i) 
are computable in time polynomial in |„4.| (note that m < |Q|). The asymptotic growth of 
the counters achievable by computations following the path rji,... ,r)m is then given by v m . 
Hence, C/i[ci] G J7(n f e) iff there is a path 771,... ,rjm in T>A such that v m ( i ) > k. Similarly, 
C,4[ci] G 0(nk) iff for every path rji,... ,rjm in T>A we have that v m ( i ) < k. From this we 
immediately obtain the upper complexity bounds of Theorem 4. 

Furthermore, for every S C C 77 of D^, we can compute the set Vectors^rj) of all u 
such that there is a path 771,... ,77TO where 771 is a root of D^, r\m = 77, and u = v m . A 
full description of the algorithm is given in [1]. If Deg(rj) is bounded by a fixed constant 
independent of A for every leaf 77 of 2?_4, then the algorithm terminates in polynomial time, 
which proves Theorem 5. 

The computational complexity of polynomial asymptotic analysis for VASS games is classified 
in our next theorem. The parameter characterizing hard instances is identified at the end of 
this section. 

• Theorem 10. Let k > 1. For every VASS game A we have that C is either in 0(nk) or 
in f 2 (n f e + 1 ) . Furthermore, the problem whether 

£ € 0(nk) is NP-complete for k=l and PSPACE-complete for k>2; 
£ <G il(nk) is in P for k=l, coNP-complete for k=2, and P'SPACE-complete for k>3; 

m £ G 6 (n f e ) is NP-complete for k=l and P'SPACE-complete for k>2. 

The same results hold also for C[c] (for a given counter c of A). 

Furthermore, we show that for every VASS game A, either £ G 0(n2 1 ') or £ G 2 ° K In 
the first case, the k such that £ G 6 ( n f e ) can be computed in polynomial space. The same 
results hold for C[c]. 

In [13], it has been shown that the problem whether £ G 0(n) is NP-complete, and if 
£ £ O(n), then £ G fi(n2). This yields the N P and coNP bounds of Theorem 10 for k = 1,2. 
Furthermore, it has been shown that the problem whether £ G 0(n2) is PSPACE -hard , and 
this proof can be trivially generalized to obtain all P S P A C E lower bounds of Theorem 10. 
The details are given in [1]. 

k if v, ^ 00 and C A [ C J , v] G 6 (n f e ) 

00 otherwise. 

4 VASS Games 
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The key insight behind the proof of Theorem 10 is that player Angel can safely commit to 
a simple locking strategy when minimizing the counter complexity. We start by introducing 
locking strategies. 

• Definition 11. Let A be a VASS game. We say that a strategy a for player Angel is 
locking if for every computation p i v i , . . . , p m v m where pm € QA and for every k < m such 
thatpk = pm we have that <r(pivi,...,PfcVfc) = <r(piVi,... , p m v m ) . 

In other words, when an angelic control state p is visited for the first time, a locking 
strategy selects and "locks" an outgoing transition of p so that whenever p is revisited, the 
previously locked transition is taken. Observe that the choice of a "locked" transition may 
depend on the whole history of a computation. 

Since a "locked" control state has only one outgoing transition, it can be seen as demonic. 
Hence, as more and more control states are locked along a computation, the VASS game A 
becomes "more and more demonic". We capture these changes as a finite acyclic graph QA 
called the locking decomposition of A. Then, we say that a locking strategy is simple if the 
choice of a locked transition after performing a given history depends only on the finite path 
in QA associated to the history. We show that Angel can achieve an asymptotically optimal 
termination/counter complexity by using only simple locking strategies. Since the height of 
QA is polynomial in \A\, the existence of an appropriate simple locking strategy for Angel 
can be decided by an alternating polynomial-time algorithm. As A P = P S P A C E , this 
proves the P S P A C E upper bounds of Theorem 10. Furthermore, our construction identifies 
the structural parameters of QA making the polynomial asymptotic analysis of VASS games 
hard. When these parameters are bounded by fixed constants, the problems of Theorem 10 
are solvable in polynomial time. 

4.1 Locking sets and the locking decomposition of A 

Let A be a VASS game. A Demonic decomposion of A is a finite directed graph T>A defined 
as follows. Let ~ C Q x Q be an equivalence where p ~ q iff either p = q, or both p,q 
are demonic and mutually reachable from each other via a finite path leading only through 
demonic control states. The vertices of T>A are the equivalence classes Q / ~ , and [p] —> [q] 
iff [p] ^ [q] and (p, u, q) e Tran for some u. For demonic V A S S , T>A becomes the standard 
D A G decomposition. For VASS games, T>A is not necessarily acyclic. 

A locking set of A is a set of transitions L C Tran such that (p, u, q) G L implies p € QA, 
and (p, u, q), (p1, u', q') <G L implies p ^ p'. A control state p is locked by L if L contains an 
outgoing transition of p. We use Jz? to denote the set of all locking sets of A. For every 
L <G Jzf, let AL be the VASS game obtained from A by "locking" the transitions of L. That 
is, each control state p locked by L becomes demonic in AL, and the only outgoing transition 
of p in AL is the transition (p, u, q) <G L. 

• Definition 12. The locking decomposition of A is a finite directed graph QA where the 
set of vertices and the set of edges of QA are the least sets V and —> satisfying the following 
conditions: 

i All elements ofV are pairs (\p],L) where L e i f and [p] is a vertex ofT>AL- When p is 
demonic/angelic in AL, we say that {[p],L) is demonic/angelic. 
V contains all pairs of the form ([p], 0). 
If{[p],L) e V where p is demonic in AL and [p] —> [q] is an edge ofT>AL, then {[q\,L) <G V 
and([p},L)^([q],L). 
If ([p], L) e V where p is angelic in AL, then for every (p,u,q) G Tran we have that 
([q],L') G V and {[p],L) -> {[q],V), where V = L U {(p,u, q)}. 
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It is easy to see that QA is acyclic and the length of every path in QA is bounded 
by \Q\ + \QA\, where at most \Q\ vertices in the path are demonic. Note that every 
computation of A obtained by applying a locking strategy determines its associated path 
in QA in the natural way. A locking strategy a is simple if the choice of a locked transition 
depends only on the path in QA associated to the performed history, (i.e., if two histories 
determine the same path in QA, then the strategy makes the same choice for both histories). 

4.2 Upper bounds 

Let A be a VASS game with d counters. For every p e Q and v e N d , let C^[c, v](n) = 
Cval[c](pu) where u = ( n ^ 1 * 1 , . . . ,nv^). We extend this notation to the vectors v <G N ^ , 
in the same way as in Section 3.2, i.e., for a given v e N ^ , , we put C^[c, v] = CA [c, v '] . 
Recall that v ' is the vector obtained from v by changing all oo components into 1, and AV 

is the VASS obtained from A by modifying every counter update vector u into u', where 
u'(i) = u(i) if v(i) ^ oo, otherwise u'(i) = 0. The main technical step towards obtaining the 
P S P A C E upper bounds of Theorem 10 is the next proposition. 

• Proposition 13. Let A be a VASS game with d counters. Furthermore, let (\p],L) be a 
vertex of QA, v € and °i a counter such that v , ^ oo. Then, one of the following two 
possibilities holds: 

there is k € N such that for every v-consistent F there exist a simple locking Angel's 
strategy av in AL and a Demon's strategy irv in AL such that av is independent of F and 

for every Demon's strategy w in AL, we have that max[ci](CompaJ^^ (p F(n))) € 0(nk); 
for every Angel's strategy a in AL, we have that max[ci]{CompaJ^'(pF(n))) € £l(nk). 

for every v-consistent F there is a Demon's strategy irv in AL such that for every Angel's 
strategy a in AL, we have that max[ci]{CompyJ^v{pF{n))) € 2N(NK 

Proposition 13 is proven by induction on the height of the subgraph rooted by ([p], L). 
The case when ([p], L) is demonic (which includes the base case when ([p],L) is a leaf) follows 
from the constructions used in the proof of Proposition 8. When the vertex ([p], L) is angelic, 
it has immediate successors of the form ([<?;], L;) where L , = L U {(p,Uj,^)}. We show that 
by locking one of the (p, Uj,^) transitions in p, Angel can minimize the growth of Cj in 
asymptotically the same way as if he used all of these transitions freely when revisiting p. 
We refer to [1] for details. 

Observe that every computation in A where Angel uses some simple locking strategy 
determines the unique corresponding path in QA (initiated in a vertex of the form ([p], 0)) in 
the natural way. Hence, all such computations can be divided into finitely many pairwise 
disjoint classes according to their corresponding paths in QA- Let ([pi], L{),..., ([pfc], Lfc) be 
a path in QA where L\ = 0. Consider the corresponding sequence v o , . . . , v*, where vo = 1 
and v , is equal either to V\Vi\{yi-\) or to Vj_ i , depending on whether ([pi],Li) is demonic 
or angelic, respectively. Here, V is the function defined in Section 3.2 (observe that the 
component [p] of T>AL containing p can be seen as a strongly connected demonic VASS after 
deleting all transitions from/to the states outside [p]). The vector describes the maximal 
asymptotic growth of the counters achievable by Demon when Angel uses the simple locking 
strategy associated to the path. Furthermore, the sequence v o , . . . , v*, is computable in time 
polynomial in \A\ and all finite components of are bounded by 2d'l'3l because the total 
number of all demonic {[pi],Li) in the path is bounded by \Q\ (cf. Proposition 8). 

The problem whether C[CJ] € 0(nk) can be decided by an alternating polynomial-
time algorithm which selects an initial vertex of the form ([p],0) universally, and then 
constructs a maximal path in QA from ([p],0) where the successors of demonic/angelic 
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vertices are chosen universally/existentially, respectively. After obtaining a maximal path 
( [ p i ] , X i ) , . . . , ([pk],Lk), the vector is computed in polynomial time, and the algorithm 
answers yes/no depending on whether Vfe(i) < k or not, respectively. The problem whether 
C[ci] € fž(n f e) is decided similarly, but here the initial vertex is chosen existentially, the 
successors of demonic/angelic vertices are chosen existentially/universally, and the algorithm 
answers yes/no depending on whether Vfe(i) > k or not, respectively. This proves the 
P S P A C E upper bounds of Theorem 10. 

Observe that the crucial parameter influencing the computational hardness of the asymp

totic analysis for VASS games is the number of maximal paths in Q^. If \QA\ and Deg([p], L) 
are bounded by constants, then the above alternating polynomial time algorithms can be 
simulated by deterministic polynomial time algorithms. Thus, we obtain the following: 

• Theorem 14. Let A be a class of VASS games such that for every A <G A we have that 
\QA\ and Deg{[p], L), where (\p],L) is a leaf of QA, are bounded by a fixed constant depending 
only on A. Then, the problems whether £ 4 € 0(nk), £ 4 <G il{nk), £j^ <G 6(n f e ) for given 
A <G A and k € N , are solvable in polynomial time (where the k is written in binary). The 
same results hold also for C[c] (for a given counter c of A). 

5 Conclusions, future work 

We presented a precise complexity classification for the problems of polynomial asymptotic 
complexity of demonic VASS and VASS games. We also identified the structural parameters 
making these problems computationally hard, and we indicated that these parameters may 
actually stay reasonably small when dealing with VASS abstractions of computer programs. 
The actual applicability and scalability of the presented results to the problems of program 
analysis requires a more detailed study including experimental evaluation. 

From a theoretical point of view, a natural question is whether the scope of effective 
asymptotic analysis can be extended from purely nondeterministic VASS to V A S S with 
probabilistic transitions (i.e., VASS M D P s and VASS stochastic games). These problems are 
challenging and motivated by their applicability to probabilistic program analysis. 
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