Detailed Information on Publication Record
2021
Regressive Ensemble for Machine Translation Quality Evaluation
ŠTEFÁNIK, Michal, Vít NOVOTNÝ and Petr SOJKABasic information
Original name
Regressive Ensemble for Machine Translation Quality Evaluation
Authors
ŠTEFÁNIK, Michal (703 Slovakia, belonging to the institution), Vít NOVOTNÝ (203 Czech Republic, belonging to the institution) and Petr SOJKA (203 Czech Republic, guarantor, belonging to the institution)
Edition
Online and Punta Cana, Dominican Republi, Proceedings of EMNLP 2021 Sixth Conference on Machine Translation (WMT 21), p. 1041-1048, 8 pp. 2021
Publisher
ACL
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
60203 Linguistics
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
electronic version available online
RIV identification code
RIV/00216224:14330/21:00122292
Organization unit
Faculty of Informatics
ISBN
978-1-954085-94-7
Keywords (in Czech)
strojový překlad; automatické vyhodnocení kvality překladu;
Keywords in English
machine translation; translation quality metrics; regressive ensemble for machine translation quality evaluation
Tags
International impact, Reviewed
Změněno: 28/8/2024 15:24, RNDr. Pavel Šmerk, Ph.D.
Abstract
V originále
This work introduces a simple regressive ensemble for evaluating machine translation quality based on a set of novel and established metrics. We evaluate the ensemble using a correlation to expert-based MQM scores of the WMT 2021 Metrics workshop. In both monolingual and zero-shot cross-lingual settings, we show a significant performance improvements over single systems. In the cross-lingual settings, we also demonstrate that an ensemble approach is well-applicable to unseen languages. Furthermore, we identify a strong reference-free baseline that consistently outperforms the commonly-used BLEU and METEOR measures and significantly improves our ensemble's performance.
Links
MUNI/A/1549/2020, interní kód MU |
|