HRDINA, Jaroslav, Aleš NÁVRAT and Lenka ZALABOVÁ. Symmetries in geometric control theory using Maple. Mathematics and Computers in Simulation. Elsevier B.V., 2021, vol. 190, December, p. 474-493. ISSN 0378-4754. doi:10.1016/j.matcom.2021.05.034.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Symmetries in geometric control theory using Maple
Authors HRDINA, Jaroslav, Aleš NÁVRAT and Lenka ZALABOVÁ (203 Czech Republic, guarantor, belonging to the institution).
Edition Mathematics and Computers in Simulation, Elsevier B.V. 2021, 0378-4754.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10101 Pure mathematics
Country of publisher Netherlands
Confidentiality degree is not subject to a state or trade secret
WWW URL
Impact factor Impact factor: 2.463 in 2020
RIV identification code RIV/00216224:14310/21:00119218
Organization unit Faculty of Science
Doi http://dx.doi.org/10.1016/j.matcom.2021.05.034
UT WoS 000690878300029
Keywords in English Geometric control theory; Optimal transport; Sub-Riemannian geometry; Pontryagin's maximum principle; Nilpotent Lie group
Tags rivok
Tags International impact, Reviewed
Changed by Changed by: Mgr. Marie Šípková, DiS., učo 437722. Changed: 20/9/2021 14:33.
Abstract
We focus on the role of symmetries in geometric control theory from the Hamiltonian viewpoint. We demonstrate the power of Ian Anderson's package Differential Geometry in CAS software Maple for dealing with control problems on Lie groups. We apply the tools to the problem of vertical rolling disc, however, anyone can modify our approach and tools to other control problems. (C) 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
Links
GA20-11473S, research and development projectName: Symetrie a invariance v analýze, geometrickém modelování a teorii optimálního řízení
Investor: Czech Science Foundation
PrintDisplayed: 30/9/2022 05:10